【題目】如圖,四邊形ABCD是⊙O的內接四邊形,AC為直徑,=,DE⊥BC,垂足為E.
(1)求證:CD平分∠ACE;
(2)判斷直線ED與⊙O的位置關系,并說明理由;
(3)若CE=1,AC=4,求陰影部分的面積.
【答案】(1)、證明過程見解析;(2)、相切,理由見解析;(3)、
【解析】
試題分析:(1)、根據(jù)內角四邊形得出∠BAD+∠BCD=180°,根據(jù)∠BCD+∠DCE=180°得到∠DCE=∠BAD,根據(jù)弧相等得到∠BAD=∠ACD,則∠DCE=∠ACD,得到平分;(2)、連接OD,根據(jù)OC=OD,得出∠ODC=∠OCD,根據(jù)∠DCE=∠ACD得到∠DCE=∠ODC,即OD∥BE,根據(jù)DE⊥BC得到OD⊥DE,得到切線;(3)、根據(jù)直徑得出∠ADC=∠E=90°,根據(jù)∠DCE=∠ACD得到△DCE∽△ACD,求出CD的長度,根據(jù)陰影部分的面積等于扇形的面積減去△OCD的面積得出答案.
試題解析:(1)、∵四邊形ABCD是⊙O內接四邊形,
∴∠BAD+∠BCD=180°,
∵∠BCD+∠DCE=180°,
∴∠DCE=∠BAD,
∵=,
∴∠BAD=∠ACD,
∴∠DCE=∠ACD,
∴CD平分∠ACE.
(2)、ED與⊙O相切.
理由:連接OD,∵OC=OD,∴∠ODC=∠OCD,
∵∠DCE=∠ACD,∴∠DCE=∠ODC,∴OD∥BE,
∵DE⊥BC,∴OD⊥DE,∴ED與⊙O相切.
(3)、∵AC為直徑,∴∠ADC=90°=∠E,∵∠DCE=∠ACD,∴△DCE∽△ACD,
∴=,即=,∴CD=2,
∵OC=OD=CD=2,∴∠ DOC=60°,
∴S陰影=S扇形-S△OCD=π-.
科目:初中數(shù)學 來源: 題型:
【題目】下列各式:①-(-2);②-|-2| ;③-22;④-(-2)2,計算結果為負數(shù)的個數(shù)有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近似數(shù)2.30表示的準確數(shù)a的范圍是( )
A. 2.295≤a<2.305 B. 2.25≤a<2.35 C. 2.295≤a≤2.305 D. 2.25<a≤2.35
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】滕州市出租車的收費標準是:起步價6元(即行駛距離不超過3千米都需付6元車費),超過3千米以后,每增加1千米,加收1.5元(不足1千米按1千米計).某人從甲地到乙地路程是x千米,出租車費為16.5元,那么x的最大值是( )
A.11
B.10
C.9
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( 。
A. (a+b)2=a2+b2 B. (﹣1+x)(﹣x﹣1)=1﹣x2
C. a4a2=a8 D. (﹣2x)3=﹣6x 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】人體中紅細胞的直徑約為0.0000077m,將數(shù)0.0000077用科學記數(shù)法表示為( 。
A. 77×10﹣5 B. 7.7×10﹣6 C. 0.77×10﹣7 D. 7.7×10﹣7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸相交于點A(-3,0)B(-1,0),與y軸相交于點C(0,3),點P是該圖象上的動點;一次函數(shù)y=kx-4k(k≠0)的圖象過點P交x軸于點Q.
(1)求該二次函數(shù)的解析式;
(2)當點P的坐標為(-4,m)時,求證:∠OPC=∠AQC;
(3)點M、N分別在線段AQ、CQ上,點M以每秒3個單位長度的速度從點A向點Q運動,同時,點N以每秒1個單位長度的速度從點C向點Q運動,當點M、N中有一點到達Q點時,兩點同時停止運動,設運動時間為t秒.
①連接AN,當△AMN的面積最大時,求t的值;
②線段PQ能否垂直平分線段MN?如果能,請求出此時直線PQ的函數(shù)關系式;如果不能請說明你的理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com