【題目】通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉化.類似的,可以在等腰三角形中建立邊角之間的聯(lián)系.我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can),如圖(1)在△ABC中,ABAC,底角B的鄰對記作canB,這時canB=底邊/=,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義,解下列問題:

1can30°   ;

2)如圖(2),已知在△ABC中,ABAC,canB,SABC24,求△ABC的周長.

【答案】1;(218

【解析】

1)過點AADBC于點D,根據(jù)∠B=30°,可得出BD=AB,結合等腰三角形的性質可得出BC=AB,繼而得出canB

2)過點AAEBC于點E,根據(jù)canB=,設BC=8x,AB=5x,再由SABC=24,可得出x的值,繼而求出周長.

解:(1)過點AADBC于點D,

∵∠B30°,

cosB,

BDAB,

∵△ABC是等腰三角形,

BC2BDAB,

can30°

故答案為:;

2)過點AAEBC于點E,

canB,則可設BC8x,AB5x

AE3x,

SABC24,

BC×AE12x224,

解得:x

ABAC5,BC8,

∴可得△ABC的周長為18

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4,點E在邊AB上,點F在邊CD上,點G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半圓的半徑OC=2,線段BC與CD是半圓的兩條弦,BC=CD,延長CD交直徑BA的延長線于點E,若AE=2,則弦BD的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:

(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;

(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;

(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.

(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形ABOC的邊BO,CO分別在x軸,y軸上,A點的坐標為(﹣86),點P在矩形ABOC的內部,點EBO邊上,滿足△PBE∽△CBO,當△APC是等腰三角形時,P點坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,點上.以點為圓心,為半徑畫弧,交于點(點與點不重合),連接;再以點為圓心,為半徑畫弧,交于點(點與點不重合),連接;再以點為圓心,為半徑畫弧,交于點(點與點不重合),連接;按照這樣的方法一直畫下去,得到點,若之后就不能再畫出符合要求的點,則等于(

A.13B.12C.11D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于,兩點,與軸交于點

1)求拋物線的解析式;

2)如圖1,拋物線的對稱軸交拋物線于點,在軸上是否存在點,使得的周長最。咳舸嬖冢蟪鳇c坐標;若不存在,請說明理由;

3)如圖2,點為直線上方拋物線上的動點,于點,求線段的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABBC,以AB為直徑的⊙OAC交于點D,過DDF⊥BC, 交AB的延長線于E,垂足為F

(1)求證:直線DE⊙O的切線;

(2)AB5AC8時,求cosE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,下列結論,正確的有( )個

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案