(2008•寶山區(qū)二模)如圖,已知AB、AC是⊙O的兩條切線,切點(diǎn)分是點(diǎn)B、點(diǎn)C,∠BAC=60°,又⊙O的半徑為2cm,則點(diǎn)A與點(diǎn)O的距離為
4
4
cm.
分析:連接OC,OA,由AC為圓的切線,根據(jù)切線的性質(zhì)得到OC與AC垂直,再由AC,AB為圓O的兩條切線,根據(jù)切線長(zhǎng)定理得到AO為∠BAC的平分線,根據(jù)∠BAC的度數(shù)求出∠CAO=30°,在直角三角形AOC中,由30°角所對(duì)的直角邊等于斜邊的一半,可得AO=2OC,由OC的長(zhǎng)即可求出OA的長(zhǎng),即為點(diǎn)A與點(diǎn)O的距離.
解答:解:連接OC,OA,
∵AC,AB為圓O的切線,
∴OC⊥AC,AO為∠BAC的平分線,
又∠BAC=60°,
∴∠CAO=∠BAO=
1
2
∠BAC=30°,
在Rt△AOC中,OC=2cm,∠CAO=30°,
∴AO=2CO=4cm.
故答案為:4.
點(diǎn)評(píng):此題考查了切線的性質(zhì),切線長(zhǎng)定理,以及含30°角直角三角形的性質(zhì),熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.同時(shí)注意已知切線,連接圓心與切點(diǎn)這條輔助線的做法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)x=1是下列哪個(gè)方程的解(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)甲、乙二人沿相同的路線由A到B勻速行進(jìn),A,B兩地間的路程為20km.他們行進(jìn)的路程s(km)與甲出發(fā)后的時(shí)間t(h)之間的函數(shù)圖象如圖所示.根據(jù)圖中信息,下列說(shuō)法中,不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)在Rt△ABC中,∠C=90°,AC=3,AB=4,則下列判斷正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)A、B、C是平面內(nèi)的三點(diǎn),AB=1,BC=2,AC=3,則下列說(shuō)法中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)不等式組
2x+1≥0
1-x>0
的整數(shù)解為:
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案