【題目】兩條直線被第三條直線所截,若∠1和∠2是同旁內(nèi)角,且∠1=75°,則∠2為( )
A.75°
B.105°
C.75°或105°
D.大小不確定
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°.
(1)用圓規(guī)和直尺在AC上作點(diǎn)P,使點(diǎn)P到A、B的距離相等.(保留作圖痕跡,不寫作法和證明)
(2)當(dāng)滿足(1)的點(diǎn)P到AB、BC的距離相等時(shí),求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線(其中)與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對稱軸l與x軸交于點(diǎn)D,且點(diǎn)D恰好在線段BC的垂直平分線上.
(1)求拋物線的關(guān)系式;
(2)過點(diǎn)的線段MN∥y軸,與BC交于點(diǎn)P,與拋物線交于點(diǎn)N.若點(diǎn)E是直線l上一點(diǎn),且∠BED=∠MNB-∠ACO時(shí),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次中學(xué)生田徑運(yùn)動(dòng)會上,根據(jù)參加男子跳高初賽的運(yùn)動(dòng)員的成績(單位:m),繪制出如下兩幅統(tǒng)計(jì)圖.請根據(jù)相關(guān)信息,解答下列問題:
(1)扇形統(tǒng)計(jì)圖中a= ,初賽成績?yōu)?.70m所在扇形圖形的圓心角為
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)這組初賽成績的眾數(shù)是 m,中位數(shù)是 ;
(4)根據(jù)這組初賽成績確定8人進(jìn)入復(fù)賽,那么初賽成績?yōu)?.60m的運(yùn)動(dòng)員楊強(qiáng)能否進(jìn)入復(fù)賽?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式由左邊到右邊的變形中,是因式分解的為( )
A. m(x+y)=mx+myB. 8x2﹣4x=4x(2x﹣1)
C. x2﹣6x+5=x(x﹣6)+5D. x2﹣9+2x=(x+3)(x﹣3)+2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,下列結(jié)論:
①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④當(dāng)x>﹣1時(shí),y的值隨x值的增大而增大;⑤當(dāng)函數(shù)值y<0時(shí),自變量x的取值范圍是x<-1或x>5.
其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE∥BF,AC平分∠BAE,且交BF于點(diǎn)C,BD平分∠ABF,且交AE于點(diǎn)D,AC與BD相交于點(diǎn)O,連接CD
(1)求∠AOD的度數(shù);
(2)求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+x+c過點(diǎn)A(0,4)和C(8,0),P(t,0)是x軸正半軸上的一個(gè)動(dòng)點(diǎn),M是線段AP的中點(diǎn),將線段MP繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得線段PB.過點(diǎn)B作x軸的垂線、過點(diǎn)A作y軸的垂線,兩直線相交于點(diǎn)D.
(1)求此拋物線的對稱軸;
(2)當(dāng)t為何值時(shí),點(diǎn)D落在拋物線上?
(3)是否存在t,使得以A、B、D為頂點(diǎn)的三角形與△PEB相似?若存在,求此時(shí)t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com