(本題10分)

如圖,斜坡AC的坡度(坡比)為1:,AC=10米.坡頂有一垂直于水平面的旗桿BC,旗桿頂端B點與A點有一條彩帶AB相連,AB=14米.試求旗桿BC的高度.

 

 

【答案】

旗桿的高度為6米

【解析】

 

試題分析:解:延長BC交AD于E點,則CE⊥AD.

在Rt△AEC中,AC=10,

由坡比為1:可知:tan∠CAE=,∴∠CAE=30°.

∴ CE=AC·sin30°=10×=5,

AE=AC·cos30°=10×

在Rt△ABE中,

BE==11.

∵ BE=BC+CE,

∴ BC=BE-CE=11-5=6(米). 

答:旗桿的高度為6米.

考點:解直角三角形

點評:本題難度中等,涉及的知識包括三角函數(shù),坡比,勾股定理。通常把坡面的垂直高度h和水平寬度l的比叫做坡比,即坡角的正切值 (tan a值 a為斜坡與水平面夾角)。學生要能夠靈活運用三角函數(shù)值來求所需的條件。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖,直線x-2y=-5和x+y=1分別與x軸交于A、B兩點,這兩條線的交點為P.

1.(1)求點P的坐標.    

2.(2)求△APB的面積.  

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖,P是雙曲線的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,設點P的坐標為(,).

(1)求當為何值時,⊙P與直線相切,并求點P的坐標.

(2)直接寫出當為何值時,⊙P與直線相交、相離.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(本題10分)如圖,以點M(-1,0)為圓心的圓與y軸、x軸分別交于點A、B、C、D,直線y=- x- 與⊙M相切于點H,交x軸于點E,交y軸于點F.

   1.(1)請直接寫出OE、⊙M的半徑r、CH的長;(3分)

2.(2)如圖1,弦HQ交x軸于點P,且DP:PH=3:2,求COS∠QHC的值;(3分)

3.(3)如圖2,點K為線段EC上一動點(不與E、C重合),連接BK交⊙M于點T,弦AT交x軸于點N.是否存在一個常數(shù)a,始終滿足MN·MK=a,如果存在,請求出a的值;如果不存在,請說明理由.(3分)

       

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年湖北武夷山市九年級上學期期末考試數(shù)學卷.doc 題型:解答題

(本題10分)如圖,在Rt△ABC中,∠C=90°,點O在AB上,以O為圓心,OA長為半徑的圓與AC、AB分別交于點D、E,且∠CBD=∠A.
試判斷直線BD與⊙O的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京師大附中初一第一學期期末考試數(shù)學卷 題型:解答題

 

(本題10分)如圖4,邊長為的矩形,它的周長為14,面積為10,求下列各式的值:(1)   (2)

 

 

 

 

查看答案和解析>>

同步練習冊答案