【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E是CD邊的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使得CF=CE,連接BE,DF,將△BEC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)點(diǎn)E恰好落在DF上的點(diǎn)H處時(shí),連接AG,DG,BG,則AG的長(zhǎng)是_____.
【答案】2
【解析】
如圖,過(guò)C作CK⊥DF于K,過(guò)H作HM⊥CF于M,過(guò)G作PN⊥BC,交AD于P,交BC于N,
∵CD=2,CE=CF=,
∵四邊形ABCD是正方形,
∴∠BCD=90°,
∴∠BCF=90°,
由勾股定理得:DF==5,
∵CK⊥DF,DC⊥CF,
∴∠FCK=∠CDF,
sin∠FCK=sin∠CDF=,
∴,
FK=1,
∴CK==2,
由旋轉(zhuǎn)得:CH=CE=CF,
∵CK⊥FH,
∴HF=KF=1,
∴HF=2,
∴S△CHF=CFHM=HFCK,
HM=2×2,
HM=,
∴CM==,
∴tan∠HCF===,
設(shè)HM=4x,CM=3x,則CH=5x,
∵∠HCF=∠GCD=∠CGN,
∴cos∠CGN=cos∠HCF==,
∴GN=CG,
∵CG=BC=2,
∴GN=×2=,
∴NC===,
∴GP=2﹣=,
∴AP=BN=BC﹣NC=2﹣=,
由勾股定理得:AG===2;
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,、、在同一條直線上,連接.
(1)請(qǐng)找出圖2中的全等三角形,并說(shuō)明理由(說(shuō)明:結(jié)論中不得含有圖中未標(biāo)識(shí)的字母);
(2)與垂直嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的是( )
A.兩邊和一角對(duì)應(yīng)相等,兩三角形全等
B.兩腰對(duì)應(yīng)相等的兩等腰三角形全等
C.兩角和一邊對(duì)應(yīng)相等,兩三角形全等
D.兩銳角對(duì)應(yīng)相等的兩直角三角形全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,在平面直角坐標(biāo)系中,是軸正半軸上一點(diǎn),是第四象限一點(diǎn),軸,交軸負(fù)半軸于,且(a-2)+|b+3|=0,四邊形AOBC=12.
(1)求點(diǎn)坐標(biāo)
(2)如圖二,設(shè)為線段上一動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),求證:∠ADB+∠DBC-∠OAD=180°
(3)如圖三,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合),點(diǎn)在線段上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)重合)時(shí),連接、作∠OAD、∠DEB的平分線交于點(diǎn),請(qǐng)你探索∠AFE與∠ADE之間的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連接AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連接AE交CD于點(diǎn)F,且EG=FG.
(1)求證:EG是⊙O的切線;
(2)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若AH=2,,求OM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)E在AD邊上,過(guò)點(diǎn)E作AB的平行線,交BC于點(diǎn)F,將矩形ABFE繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn),使點(diǎn)F的對(duì)應(yīng)點(diǎn)落在邊CD上,點(diǎn)B的對(duì)應(yīng)點(diǎn)N落在邊BC上.
(1)求證:BF=NF;
(2)已知AB=2,AE=1,求EG的長(zhǎng);
(3)已知∠MEF=30°,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】材料閱讀:
若a是正整數(shù),則長(zhǎng)度為的線段是有可能表示正方形網(wǎng)格中兩個(gè)格點(diǎn)之間的距離(設(shè)小正方形的長(zhǎng)度為單位1).如圖1所示,A、B兩點(diǎn)之間的距離就是.
(1)在圖1中以A為一個(gè)端點(diǎn),畫出一條長(zhǎng)為的線段AC;
(2)(空格處填正整數(shù),兩組數(shù)要求不一樣),并根據(jù)你填的數(shù)字,在圖2中畫出兩種對(duì)應(yīng)的線段,其長(zhǎng)度均為;
(3)利用材料所給的方法,直接寫出三邊長(zhǎng)分別為、、的三角形的面積:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如果兩個(gè)三角形兩邊和其中一邊所對(duì)的角相等,則兩個(gè)三角形全等,這是一個(gè)假命題,請(qǐng)畫圖舉例說(shuō)明;
(2)如圖,在△ABC和△DEF中,AB=ED,BC=DF,∠BAC=∠DEF=120°,求證:△ABC≌△EDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,有一個(gè)五角星ABCDE,你能說(shuō)明∠A+∠B+∠C+∠D+∠E=嗎? 如圖2、圖3,如果點(diǎn)B向右移到AC上,或AC的另一側(cè)時(shí),上述結(jié)論仍然成立嗎?請(qǐng)分別說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com