【題目】如圖,AB為⊙O的直徑,弦CD⊥AB于E,∠CDB=15°,OE=2

(1)求⊙O的半徑;

(2)將△OBD繞O點旋轉(zhuǎn),使弦BD的一個端點與弦AC的一個端點重合,則弦BD與弦AC的夾角為   

【答案】60°90°

【解析】試題分析:(1)求出∠BOD的度數(shù),在RtODE中,根據(jù)∠DOE=30°,OE=2,求出DEOD即可;

2)分為4種情況,分別求出∠CAB和∠OAB(或∠OAD、OCB)的度數(shù),相加(或相減)即可求出答案.

試題解析:(1AB為⊙O的直徑,弦CDABE

∴∠BDC=BOD

而∠CDB=15°,

∴∠BOD=2×15°=30°

RtODE中,∠DOE=30°OE=2,

OE=DE,OD=2DE,

DE==2,

OD=4,

即⊙O的半徑為4;

2)有4種情況:如圖:

①如圖1所示:∵OA=OBAOB=30°,

∴∠OAB=OBA=75°,

CDAB,AB是直徑,

∴弧BC=BD

∴∠CAB=BOD=15°,

∴∠CAB=BAO+CAB=15°+75°=90°

②如圖2所示,∠CAD=75°﹣15°=60°

③如圖3所示:∠ACB=90°;

④如圖4所示:∠ACB=60°;

故答案為:60°90°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將等腰繞底角頂點A逆時針旋轉(zhuǎn)15°后得到,如果,那么兩個三角形的重疊部分面積為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在①這三對數(shù)值中,__________是方程x2yz3的解,__________是方程2xyz1的解,__________是方程3xyz2的解,因此__________是方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,它是一個8×10的網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點叫格點,△ABC的頂點均在格點上.

1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1

2)畫出△ABC關(guān)于點O的中心對稱圖形△A2B2C2

3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形嗎?如果是,請畫出對稱軸.△A1B1C1與△A2B2C2組成的圖形   (填“是”或“不是”)軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,ABCD,求∠A+AEC+C的度數(shù).

解:過點EEFAB

EFAB(已作)

∴∠A+AEF=180°______

又∵ABCD(已知)

EFCD______

∴∠CEF+______=180°(兩直線平行,同旁內(nèi)角互補)

∴∠A+AEF+CEF+C=360°(等式性質(zhì))

即∠A+AEC+C=______

2)根據(jù)上述解題及作輔助線的方法,在圖2中,ABEF,則∠B+C+D+E=______

3)根據(jù)(1)和(2)的規(guī)律,圖3ABGF,猜想:∠B+C+D+E+F=______

4)如圖4,ABCD,在B,D兩點的同一側(cè)有M1,M2,M3,Mnn個折點,則∠B+M1+M2+…+Mn+D的度數(shù)為______(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABN△ACM位置如圖所示,AB=AC,AD=AE,∠1=∠2

1)求證:BD=CE

2)求證:∠M=∠N

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+2ax+c的圖象與x軸交于A、B兩點(點A在點B的左邊)AB=4,與y軸交于點C,OC=OA,點D為拋物線的頂點.

(1)求拋物線的解析式;

(2)點M(m,0)為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N,可得矩形PQNM,如圖1,點P在點Q左邊,當矩形PQNM的周長最大時,求m的值,并求出此時的△AEM的面積;

(3)已知H(0,﹣1),點G在拋物線上,連HG,直線HG⊥CF,垂足為F,若BF=BC,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:BCOA,∠B=A=120°,試回答下列問題:

(1)如圖1所示,求證:OBAC

(2)如圖2,若點E、FBC上,且滿足∠FOC=AOC,并且OE平分∠BOF,則∠EOC的度數(shù)是______;

(3)(2)的條件下,若平行移動AC,其它條件不變,如圖3,則∠OCB:∠OFB的值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10, ,點E是點D關(guān)于AB的對稱點,MAB上的一動點,下列結(jié)論:①∠BOE=60°②∠CED=AOD;DMCECM+DM的最小值是10,其中正確的序號是______

查看答案和解析>>

同步練習冊答案