【題目】如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,拋物線y=+bx+c經(jīng)過(guò)A,B兩點(diǎn),拋物線的頂點(diǎn)為D.
(1)、求b,c的值;
(2)、點(diǎn)E是直角三角形ABC斜邊AB上一動(dòng)點(diǎn)(點(diǎn)A、B除外),過(guò)點(diǎn)E作x軸的垂線交拋物線于點(diǎn)F,當(dāng)線段EF的長(zhǎng)度最大時(shí),求點(diǎn)E的坐標(biāo);
(3)、在(2)的條件下:①求以點(diǎn)E、B、F、D為頂點(diǎn)的四邊形的面積;②在拋物線上是否存在一點(diǎn)P,使△EFP是以EF為直角邊的直角三角形? 若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)、b=-2;c=-3;(2)、(,);(3)、;,(
【解析】
試題分析:(1)、根據(jù)題意求出點(diǎn)A、點(diǎn)B的坐標(biāo),然后代入解析式求出b、c的值;(2)、射線求出直線AB的解析式,設(shè)出點(diǎn)E和F的坐標(biāo),求出EF的長(zhǎng)度,然后根據(jù)函數(shù)的性質(zhì)求出最值;(3)、首先求出點(diǎn)D和點(diǎn)F的坐標(biāo),將四邊形的面積轉(zhuǎn)化成△BEF和△DEF進(jìn)行求解;過(guò)點(diǎn)E作a⊥EF交拋物線與點(diǎn)P,設(shè)出點(diǎn)P的坐標(biāo),解出方程;過(guò)F作b⊥EF交拋物線與點(diǎn)P,設(shè)出點(diǎn)P的坐標(biāo),解出方程.
試題解析:(1)由已知得:A(-1,0) B(4,5)∵二次函數(shù)y=+bx+c的圖像經(jīng)過(guò)點(diǎn)A(-1,0)B(4,5)
∴ 解得:b=-2 c=-3
(2)、如圖:∵直線AB經(jīng)過(guò)點(diǎn)A(-1,0) B(4,5) ∴直線AB的解析式為:y=x+1
∵二次函數(shù)y=-2x-3 ∴設(shè)點(diǎn)E(t,t+1),則F(t,-2t-3)
∴EF=(t+1)-(-2t-3)=
∴當(dāng)時(shí),EF的最大值= ∴點(diǎn)E的坐標(biāo)為(,)
①如圖:
順次連接點(diǎn)E、B、F、D得四邊形EBFD.
可求出點(diǎn)F的坐標(biāo)(,),點(diǎn)D的坐標(biāo)為(1,-4)
S=S+S
==
②如圖:ⅰ)過(guò)點(diǎn)E作a⊥EF交拋物線于點(diǎn)P,設(shè)點(diǎn)P(m,)則有:解得:, ∴,
ⅱ)過(guò)點(diǎn)F作b⊥EF交拋物線于,設(shè)(n,)則有:
解得: ,(與點(diǎn)F重合,舍去)∴
綜上所述:所有點(diǎn)P的坐標(biāo):,(能使△EFP組成以EF為直角邊的直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)正多邊形的一個(gè)內(nèi)角是140°,則這個(gè)正多邊形的邊數(shù)是( )
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:①弦是直徑;②直徑是弦;③過(guò)圓心的線段是直徑;④一個(gè)圓的直徑只有一條.其中正確的是(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(-2,3)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,拋物線的頂點(diǎn)為M,平行于x軸的直線與該拋物線交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B左側(cè)),根據(jù)對(duì)稱性△AMB恒為等腰三角形,我們規(guī)定:當(dāng)△AMB為直角三角形時(shí),就稱△AMB為該拋物線的“完美三角形”.
(1)①如圖2,求出拋物線的“完美三角形”斜邊AB的長(zhǎng);
②拋物線與的“完美三角形”的斜邊長(zhǎng)的數(shù)量關(guān)系是 ;
(2)若拋物線的“完美三角形”的斜邊長(zhǎng)為4,求a的值;
(3)若拋物線的“完美三角形”斜邊長(zhǎng)為n,且的最大值為-1,求m,n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com