已知:如圖,在直角坐標系中,有菱形OABC,A點的坐標為(10,0),對角線OB,AC相交于D點,雙曲線y= (x>0)經(jīng)過D點,交BC的延長線于E點,且OB•AC=160,有下列四個結論:①菱形OABC的面積為80; ②E點的坐標是(4,8);③雙曲線的解析式為y=
(x>0); ④
,其中正確的結論有(
)個。
A.1 B.2 C.3 D.4
C.
【解析】
試題分析:過點C作CF⊥x軸于點F,由OB•AC=160可求出菱形的面積,由A點的坐標為(10,0)可求出CF的長,由勾股定理可求出OF的長,故可得出C點坐標,對角線OB、AC相交于D點可求出D點坐標,用待定系數(shù)法可求出雙曲線y=(x>0)的解析式,由反比例函數(shù)的解析式與直線BC的解析式聯(lián)立即可求出E點坐標;由sin∠COA=
可求出∠COA的正弦值;根據(jù)A、C兩點的坐標可求出AC的長,由OB•AC=160即可求出OB的長.
過點C作CF⊥x軸于點F,
∵OB•AC=160,A點的坐標為(10,0),
∴,菱形OABC的面積為80,故①正確;
又菱形OABC的邊長為10,
∴CF=
在Rt△OCF中,
∵OC=10,CF=8,
∴,
∴C(6,8),
∵點D時線段AC的中點,
∴D點坐標為(,
),即(8,4),
∵雙曲線y=(x>0)經(jīng)過D點,
∴4=,即k=32,
∴雙曲線的解析式為:y=(x>0),故③錯誤;
∵CF=8,
∴直線CB的解析式為y=8,
∴,解得x=4,y=8,
∴E點坐標為(4,8),故②正確;
∵CF=8,OC=10,
∴,故④正確;
故選C.
考點: 反比例函數(shù).
科目:初中數(shù)學 來源: 題型:
k |
x |
k |
x |
10 |
7 |
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年甘肅省蘭州四中九年級(上)期中數(shù)學試卷(解析版) 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(四川巴中卷)數(shù)學(解析版) 題型:解答題
如圖,在平面直角坐標系中,一次函數(shù)的圖象與y軸交于點A,
與x軸交于點B,與反比例函數(shù)的圖象分別交于點M,N,已知△AOB的面積為1,點M的縱坐
標為2,
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)直接寫出時x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源:2013屆安徽滁州八年級下期末模擬數(shù)學試卷(滬科版)(解析版) 題型:解答題
已知:如圖1,平面直角坐標系中,四邊形OABC是矩形,點A,C的坐
標分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-
+
交折線O-A-B于點E.
(1)在點D運動的過程中,若△ODE的面積為S,求S與的函數(shù)關系式,并寫出自變量的取值范圍;
(2)如圖2,當點E在線段OA上時,矩形OABC關于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;
(3)問題(2)中的四邊形DMEN中,ME的長為____________.
查看答案和解析>>
科目:初中數(shù)學 來源:2011年初中畢業(yè)升學考試(廣西欽州卷)數(shù)學 題型:解答題
(本題滿分8分)已知四邊形ABCD是邊長為4的正方形,以AB為直徑在正方形內作半圓,P是半圓上的動點(不與點A、B重合),連接PA、PB、PC、PD.
(1)如圖①,當PA的長度等于
時,∠PAB=60°;
當PA的長度等于 時,△PAD是等腰三角形;
(2)如圖②,以AB邊所在直線為x軸、AD邊所在直線為y軸,建立如圖所示的直角
坐標系(點A即為原點O),把△PAD、△PAB、△PBC的面積分別記為S1、S2、S3.坐
標為(a,b),試求2 S1 S3-S22的最大值,并求出此時a,b的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com