【題目】這次數學實踐課上,同學進行大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為37°,然后沿在同一剖面的斜坡AB行走5 米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度i=1:2(通常把坡面的垂直高度h和水平寬度l的比叫做坡度,即tanα值(α為斜坡與水平面夾角),那么大樹CD的高度約為(參考數據:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )
A. 7米 B. 7.2米 C. 9.7米 D. 15.5米
【答案】A
【解析】
作BF⊥AE于F,則FE=BD=6米,DE=BF,設BF=x米,則AF=2x米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=10米,得出AE的長度,在Rt△ACE中,由三角函數求出CE,計算即可.
作BF⊥AE于F,
則FE=BD=6米,DE=BF,
∵斜面AB的坡度i=1:2,
∴AF=2BF,
設BF=x米,則AF=2x米,
在Rt△ABF中,由勾股定理得:x2+(2x)2=(5)2,
解得:x=5,
∴DE=BF=5米,AF=10米,
∴AE=AF+FE=16米,
在Rt△ACE中,CE=AEtan37°≈16×0.75=12米,
∴CD=CE-DE=12米-5米=7米,
故選:A.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點C的切線交AB的延長線于點D,且∠A=∠D.
(1)求∠ACD的度數;
(2)若CD=3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點,且∠BAE=45°.若CD=4,則△ABE的面積為_______
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD,DEFG都是正方形,邊長分別為m,n(m<n).坐標原點O為AD的中點,A,D,E在y軸上,若二次函數y=ax2的圖象過C,F兩點,則=( 。
A.+1B.+1C.2﹣1D.2﹣1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017江蘇省連云港市)如圖,已知等邊三角形OAB與反比例函數(k>0,x>0)的圖象交于A、B兩點,將△OAB沿直線OB翻折,得到△OCB,點A的對應點為點C,線段CB交x軸于點D,則的值為____.(已知sin15°=)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,∠ACB=90°,CD是∠ACB的平分線,點P在CD上,CP=.將三角板的直角頂點放置在點P處,繞著點P旋轉,三角板的一條直角邊與射線CB交于點E,另一條直角邊與直線CA、直線CB分別交于點F、點G.
(1)如圖,當點F在射線CA上時,
①求證:PF=PE.
②設CF=x,EG=y(tǒng),求y與x的函數解析式并寫出函數的定義域.
(2)連接EF,當△CEF與△EGP相似時,求EG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩堆背面完全相同的撲克,第一堆正面分別寫有數字1、2、3、4,第二堆正面分別寫有數字1、2、3.分別混合后,小玲從第一堆中隨機抽取一張,把卡片上的數字作為被減數;小惠從第二堆中隨機抽取一張,把卡片上的數字作為減數,然后計算出這兩個數的差.
(1)請用畫樹狀圖或列表的方法,求這兩數差為0的概率;
(2)小玲與小惠作游戲,規(guī)則是:若這兩數的差為非負數,則小玲勝;否則,小惠勝.你認為該游戲規(guī)則公平嗎?如果公平,請說明理由.如果不公平,請你修改游戲規(guī)則,使游戲公平.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com