【題目】太陽(yáng)影子定位技術(shù)是通過(guò)分析視頻中物體的太陽(yáng)影子變化,確定視頻拍攝地點(diǎn)的一種方法.為了確定視頻拍攝地的經(jīng)度,我們需要對(duì)比視頻中影子最短的時(shí)刻與同一天東經(jīng)120度影子最短的時(shí)刻.在一定條件下,直桿的太陽(yáng)影子長(zhǎng)度l(單位:米)與時(shí)刻t(單位:時(shí))的關(guān)系滿足函數(shù)關(guān)系l=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三個(gè)時(shí)刻的數(shù)據(jù),根據(jù)上述函數(shù)模型和記錄的數(shù)據(jù),則該地影子最短時(shí),最接近的時(shí)刻t是(
A.12.75
B.13
C.13.33
D.13.5

【答案】C
【解析】解:把(12,0.6)、(13,0.35)、(14,0.4)代入l=at2+bt+c中得: ,
解得: ,
∴l(xiāng)=0.15t2﹣4t+27,
∵0.15>0,
∴l(xiāng)有最小值,
當(dāng)t=﹣ = ≈13.33時(shí),該地影子最短;
故選C.
【考點(diǎn)精析】本題主要考查了平行投影的相關(guān)知識(shí)點(diǎn),需要掌握太陽(yáng)光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據(jù)另一物體的頂端可作出其影子才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問(wèn)題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時(shí)距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度y(米)與登山時(shí)間x(分)之間的函數(shù)關(guān)系式;

(3)登山多長(zhǎng)時(shí)間時(shí),甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在ABCD中,過(guò)點(diǎn)D作對(duì)DE⊥AB于點(diǎn)E,點(diǎn)F在邊CD上,CF=AE,連結(jié)AF,BF.

(1)求證:四邊形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的角平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD,E為平面內(nèi)任意一點(diǎn),連結(jié)DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到DG,連結(jié)EC,AG.

(1)當(dāng)點(diǎn)E在正方形ABCD內(nèi)部時(shí),
①依題意補(bǔ)全圖形;
②判斷AG與CE的數(shù)量關(guān)系與位置關(guān)系并寫(xiě)出證明思路.
(2)當(dāng)點(diǎn)B,D,G在一條直線時(shí),若AD=4,DG= ,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)坐標(biāo)原點(diǎn)O的直線l與雙曲線y= 相交于點(diǎn)A(m,3).
(1)求直線l的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂于x軸的直線與l及雙曲線的交點(diǎn)分別為B,C,當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí),寫(xiě)出n的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是某公園一塊草坪上的自動(dòng)旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個(gè)扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測(cè)量出了相關(guān)數(shù)據(jù),并畫(huà)出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),△OAB沿x軸向右平移后得到△O′A′B′,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′是直線y= x上一點(diǎn),則點(diǎn)B與其對(duì)應(yīng)點(diǎn)B′間的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y1= 的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,﹣2).
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫(xiě)出y1>y2時(shí)自變量x的取值范圍.
(3)連接OA、OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義: 數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱這個(gè)三角形為“智慧三角形”.
理解:
(1)如圖1,已知A、B是⊙O上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn)C,使△ABC為“智慧三角形”(畫(huà)出點(diǎn)C的位置,保留作圖痕跡);
(2)如圖2,在正方形ABCD中,E是BC的中點(diǎn),F(xiàn)是CD上一點(diǎn),且CF= CD,試判斷△AEF是否為“智慧三角形”,并說(shuō)明理由; 運(yùn)用:

(3)如圖3,在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,點(diǎn)Q是直線y=3上的一點(diǎn),若在⊙O上存在一點(diǎn)P,使得△OPQ為“智慧三角形”,當(dāng)其面積取得最小值時(shí),直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案