(2012•黑河)已知一個口袋中裝有7個只有顏色不同的球,其中3個白球,4個黑球,若往口袋中再放入x個白球和y個黑球,從口袋中隨機取出一個白球的概率是
14
,則y與x之間的函數(shù)關系式為
y=3x+5
y=3x+5
分析:根據(jù)白球的概率公式:
白球的總數(shù)
口袋內球的總個數(shù)
得到相應的方程:
3+x
7+x+y
=
1
4
,根據(jù)方程求解即可.
解答:解:∵取出一個白球的概率P=
3+x
7+x+y
,
3+x
7+x+y
=
1
4

∴12+4x=7+x+y,
∴y與x的函數(shù)關系式為:y=3x+5.
故答案為:y=3x+5.
點評:此題主要考查了概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=
m
n
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結論:①abc>0;②b2-4ac<0;③4a-2b+c<0;④b=-2a.則其中結論正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖,已知AC=BD,要使△ABC≌△DCB,則只需添加一個適當?shù)臈l件是
此題答案不唯一:如AB=DC或∠ACB=∠DBC
此題答案不唯一:如AB=DC或∠ACB=∠DBC
.(填一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•黑河)如圖,在平面直角坐標系中,已知Rt△AOB的兩條直角邊OA、OB分別在y軸和x軸上,并且OA、OB的長分別是方程x2-7x+12=0的兩根(OA<OB),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點0運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標.
(2)求當t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標.
(3)當t=2時,在坐標平面內,是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案