【題目】問題提出:
如圖所示,有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.
a.每次只能移動1個金屬片;
b.較大的金屬片不能放在較小的金屬片上面.
把個金屬片從1號針移到3號針,最少移動多少次?
問題探究:為了探究規(guī)律,我們采用一般問題特殊化的方法,先從簡單的情形入手,再逐次遞進,最后得出一般性結論.
探究一:當時,只需把金屬片從1號針移到3號針,用符號表示,共移動了1次.
探究二:當時,為了避免將較大的金屬片放在較小的金屬片上面,我們利用2號針作為“中間針”,移動的順序是:
a.把第1個金屬片從1號針移到2號針;
b.把第2個金屬片從1號針移到3號針;
c.把第1個金屬片從2號針移到3號針.
用符號表示為:,,.共移動了3次.
探究三:當時,把上面兩個金屬片作為一個整體,則歸結為的情形,移動的順序是:
a.把上面兩個金屬片從1號針移到2號針;
b.把第3個金屬片從1號針移到3號針;
c.把上面兩個金屬片從2號針移到3號針.
其中(1)和(3)都需要借助中間針,用符號表示為:
,,,,,,.共移動了7次.
(1)探究四:請仿照前面步驟進行解答:當時,把上面3個金屬片作為一個整體,移動的順序是:___________________________________________________.
(2)探究五:根據(jù)上面的規(guī)律你可以發(fā)現(xiàn)當時,需要移動________次.
(3)探究六:把個金屬片從1號針移到3號針,最少移動________次.
(4)探究七:如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,當時如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,那么與的關系是__________.
【答案】(1)當時,移動順序為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).
(2),(3),(4)
【解析】
根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到2柱,然后把最大的盤子移動到3柱,再用同樣的次數(shù)從2柱移動到3柱,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.
解:(1)當時,把上面3個金屬片作為一個整體,移動的順序是:
(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).
故答案為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).
(2)解:設 是把n個盤子從1柱移到3柱過程中移動盤子之最少次數(shù)
n=1時,f(1)=1;
n=2時,小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成,即
n=3時,小盤→3柱,中盤→2柱,小盤從3柱→2柱,大盤從1柱→3柱,小盤從2柱→1柱,中盤從2柱→3柱,小盤從1柱→3柱,完成.
[用種方法把中、小兩盤移到2柱,大盤3柱;再用 種方法把中、小兩盤從2柱3柱,完成],
故答案為:
(3)由(2)知:
故答案為:
(4)
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB=6,BC=9,點E是BC邊上一動點,連接AE、DE ,作△ECD的外接⊙O,交AD于點F,交AE于點G,連接FG.
(1)求證△AFG∽△AED;
(2)當BE的長為 時,△AFG為等腰三角形;
(3)如圖②,若BE=1,求證:AB與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點為雙曲線上的一點,過點作軸、軸的垂線,分別交直線于點、兩點(點在點下方.若直線與軸交于點,與軸相交于點,則的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機傳給乙、丙、丁中的某一人,第二次由持球者將球再隨機傳給其他三人中的某一人.
(1)第一次傳球后球到乙手里的概率為 ;
(2)畫樹狀圖或列表求第二次傳球后球回到甲手里的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在學習“軸對稱現(xiàn)象”內(nèi)容時,老師讓同學們尋找身邊的軸對稱圖形,小明利用手中的一副三角尺和一個量角器(如圖所示)進行探究.
(1)小明在這三件文具中任取一件,結果是軸對稱圖形的概率是_________;(取三件中任意一件的可能性相同)
(2)小明發(fā)現(xiàn)在、兩把三角尺中各選一個角拼在一起(無重疊無縫隙)會得到一個更大的角,若每個角選取的可能性相同,請用畫樹狀圖或列表的方法說明拼成的角是鈍角的概率是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ADE是有公共頂點的等腰直角三角形,∠BAC=∠DAE=90°,點P為射線BD,CE的交點.
(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點A旋轉(zhuǎn),當∠EAC=90°時,求PB的長;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為調(diào)查廣西北部灣四市市民上班時最常用的交通工具的情況,隨機抽取了四市部分市民進行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動車,C:公交車,D:家庭汽車,E:其他”五個選項中選擇最常用的一項,將所有調(diào)查結果整理后繪制成如下不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請結合統(tǒng)計圖回答下列問題:
(1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計圖中,C組對應的扇形圓心角是 °;
(2)請補全條形統(tǒng)計圖;
(3)若甲、乙兩人上班時從A、B、C、D四種交通工具中隨機選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請用畫樹狀圖或列表法求解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,AC=BC=6,∠EDF的頂點D是AB的中點,且∠EDF=45°,現(xiàn)將∠EDF繞點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,當∠EDF的兩邊DE、DF分別交直線AC于點G、H,把△DGH沿DH折疊,點G落在點M處,連接AM,若=,則AH的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行B地,已知B地位于A地北偏東67°方向,距離A地520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達高鐵,求A地到C地之間高鐵線路的長(結果保留整數(shù))(參考數(shù)據(jù):sin67°≈0.92;cos67°≈0.38;≈1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com