【題目】如圖,分別沿長(zhǎng)方形紙片和正方形紙片的對(duì)角線,剪開(kāi),拼成如圖所示的四邊形,若中間空白部分四邊形恰好是正方形,且四邊形的面積為,則正方形的面積是( )

A.B.C.D.

【答案】C

【解析】

首先設(shè)設(shè)正方形的邊長(zhǎng)為a,長(zhǎng)方形的長(zhǎng)為b,寬為c,則MP=MQ+QP=NQ-RQ,即a=c+QP=b-RQ,得出QP=a-c,RQ=b-a,再根據(jù)QP=RQ,即a-c=b-a,得出2a=b+c,進(jìn)而得出平行四邊形的面積為=72,解得a=6,b=12,即可得解.

由題意可知,設(shè)正方形的邊長(zhǎng)為a,長(zhǎng)方形的長(zhǎng)為b,寬為c

MP=MQ+QP=NQ-RQ,即a=c+QP=b-RQ

QP=a-c,RQ=b-a

QP=RQ,即a-c=b-a

2a=b+c

∴平行四邊形的面積為=72

a=6,b=12

RQ=12-6=6

正方形的面積是36

故答案為C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1A,B分別在射線OAON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是OAP,OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).

1)求證:PCE≌△EDQ;

2)延長(zhǎng)PCQD交于點(diǎn)R.如圖2,若∠MON=150°,求證:ABR為等邊三角形;

3如圖3,若ARB∽△PEQ,求∠MON大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點(diǎn)D、E.

(1)若AC=12,BC=15,求ABD的周長(zhǎng);

(2)若∠B=20°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,的直徑,上一點(diǎn),和過(guò)點(diǎn)的切線互相垂直,垂足為點(diǎn)

如圖,求證:平分

如圖,直線的延長(zhǎng)線交于點(diǎn),的平分線交于點(diǎn)于點(diǎn),求證:

的條件下,如圖,若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,已知,,,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的菱形中,,連接對(duì)角線,以為邊作第二個(gè)菱形,使,連接,再以為邊作第三個(gè)菱形,使;…,按此規(guī)律所作的第六個(gè)菱形的邊長(zhǎng)為(

A. 9 B. 9 C. 27 D. 27

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為的正方形中,點(diǎn),,,分別按,,的方向同時(shí)出

發(fā),以的速度勻速運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,設(shè)四邊形的面積為,運(yùn)動(dòng)時(shí)間為

試證明四邊形是正方形;

寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求運(yùn)動(dòng)幾秒鐘時(shí),面積最小,最小值是多少?

是否存在某一時(shí)刻,使四邊形的面積與正方形的面積比是?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)是一種簡(jiǎn)易臺(tái)燈,在其結(jié)構(gòu)圖(2)中燈座為△ABC(BC伸出部分不計(jì)),A、C、D在同一直線上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,燈桿CD長(zhǎng)為40cm,燈管DE長(zhǎng)為15cm.

(1)求DE與水平桌面(AB所在直線)所成的角;

(2)求臺(tái)燈的高(點(diǎn)E到桌面的距離,結(jié)果精確到0.1cm).

(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AEBF,AC平分BAE,且交BF于點(diǎn)C,BD平分ABF,且交AE于點(diǎn)D,AC與BD相交于點(diǎn)O,連接CD

(1)求AOD的度數(shù);

(2)求證:四邊形ABCD是菱形.

查看答案和解析>>

同步練習(xí)冊(cè)答案