如圖,在矩形紙片ABCD中,AB=2cm,點(diǎn)E在BC上,且AE=CE.若將紙片沿AE折疊,點(diǎn)B恰好與AC上的點(diǎn)B1重合,則AC=      cm.
4

分析:根據(jù)題意推出AB=AB=2,由AE=CE推出AB=BC,即AC=4.
解答:解:∵AB=2cm,AB=AB1
∴AB=2cm,
∵四邊形ABCD是矩形,AE=CE,
∴∠ABE=∠ABE=90°
∵AE=CE,
∴AB=BC,
∴AC=4cm.
故答案為:4.
點(diǎn)評(píng):本題主要考查翻折的性質(zhì)、矩形的性質(zhì)、等腰三角形的性質(zhì),解題的關(guān)鍵在于推出AB=AB1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題8分)在等腰梯形ABCD中,ABDCAD=BC=5,DC=7,AB=13,點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度沿ADDC向終點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度沿BA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
⑴當(dāng)t為何值時(shí),四邊形PQBC為平行四邊形時(shí)?
⑵在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),以點(diǎn)C、P、Q為頂點(diǎn)的三角形是直角三角形?
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題5分)如圖,在平行四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,且AE=CF,
則四邊形DEBF是平行四邊形嗎?說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若平行四邊形的一邊和一條對(duì)角線長(zhǎng)都是10㎝,則另一條對(duì)角線長(zhǎng)可以(   )
A.5㎝              B.10㎝           C.20㎝  D.30㎝

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在?ABCD中,對(duì)角線AC=21㎝,BE⊥AC,垂足為E,且BE=5㎝,AD=7㎝,則AD和BC之間的距離為              。
  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法中,正確的是(  )
A.對(duì)角線相等的四邊形是矩形
B.對(duì)角線互相垂直的四邊形是菱形
C.對(duì)角線相等的平行四邊形是矩形
D.對(duì)角線互相垂直的平行四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿分l0分)如圖,在△ABC中,∠ACB=90°,點(diǎn)E為AB中點(diǎn),連結(jié)CE,過(guò)點(diǎn)E作ED上BC于點(diǎn)D,在DE的延長(zhǎng)線上取一點(diǎn)F,使得AF=CE,求證:四邊形ACEF是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在梯形ABCD中,AD∥BC,若再加上一個(gè)條件___________,則可得梯形ABCD是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如果一條直線把一個(gè)平面圖形的面積分成相等的兩部分,我們把這條直線稱(chēng)為這個(gè)平面圖形的一條面積等分線.如,平行四邊形的一條對(duì)角線所在的直線就是平行四邊形的一條面積等分線.
(1)三角形的中線、高線、角平分線分別所在的直線一定是三角形的面積等分線的是_______;
(2)如圖1,梯形ABCD中,ABDC,如果延長(zhǎng)DCE,使CEAB,連接AE,那么有S梯形ABCD SADE.請(qǐng)你給出這個(gè)結(jié)論成立的理由,并過(guò)點(diǎn)A作出梯形ABCD的面積等分線(不寫(xiě)作法,保留作圖痕跡);
(3)如圖2,四邊形ABCD中,ABCD不平行,SADCSABC,過(guò)點(diǎn)A能否作出四邊形ABCD的面積等分線?若能,請(qǐng)畫(huà)出面積等分線,并給出說(shuō)明;若不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案