16、二次函數(shù)y=ax2+bx+c圖象的對稱軸是x=1,函數(shù)有最小值是-4,且過點(diǎn)(3,0)
(1)求此二次函數(shù)的解析式;
(2)畫出此函數(shù)的示意圖;
(3)根據(jù)圖象回答問題:當(dāng)x取何值時(shí),y<0?
分析:因?yàn)閳D象的對稱軸是x=1,最小值是-4,所以頂點(diǎn)坐標(biāo)為(1,-4),設(shè)出拋物線的頂點(diǎn)坐標(biāo)形式y(tǒng)=a(x-1)2-4,將點(diǎn)(3,0)代入,即得拋物線的解析式.由圖象看出,當(dāng)-1<x<3時(shí),y<0.
解答:解:(1)根據(jù)題意得,此二次函數(shù)的圖象的頂點(diǎn)為(1,-4)

∴設(shè)此二次函數(shù)的解析式為:y=a(x-1)2-4
∵二次函數(shù)圖象過(3,0)
∴a(3-1)2-4=0
∴a=1
∴所求二次函數(shù)的解析式為:y=(x-1)2-4
即:y=x2-2x-3(3分)

(2)圖象(5分)


(3)根據(jù)圖象可知:當(dāng)-1<x<3時(shí),y<0(6分)
點(diǎn)評:本題考查了用待定系數(shù)法求函數(shù)解析式的方法,要巧妙地利用頂點(diǎn)坐標(biāo)設(shè)出拋物線的方程,滲透數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時(shí),二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時(shí)從B點(diǎn)出發(fā),均以每秒1個(gè)單位長度的速度分別沿BA、BC邊運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)時(shí)間為t秒時(shí),連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時(shí),有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時(shí),y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時(shí),y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案