精英家教網 > 初中數學 > 題目詳情

【題目】如圖(1),在中,.若將繞點順時針旋轉至Δ,使射線射線相交于點(不與、重合).

1)如圖(1),若,則 ;

2)如圖(2),連結,若,試求出的度數;

3)請?zhí)骄?/span>之間所滿足的數量關系,并加以證明.

【答案】1;(2;(3

【解析】

1)由兩直線平行內錯角相等即可得到答案;

2)根據旋轉前后線段和角相等及可得到為等腰直角三角形,從而得到的度數;

(3)分兩種情況討論:①射線與線段相交于點,②射線延長線相交于點,通過平行線的性質和題中的角度關系即可得到答案.

解:(1)∵,,

,

故答案為;

2)由旋轉可知,

,

,即

為等腰直角三角形,

3,

①如圖(2),射線與線段相交于點,

由旋轉可知,

,

,

由于,,

②如下圖,射線延長線相交于點,

由旋轉可知,

,

,

,

,

故答案為:

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=-x 2+bx+c與x軸交于A、B兩點,與y軸交于點C,已知經過B、C兩點的直線的表達式為y=-x+3.

(1)求拋物線的函數表達式;
(2)點P(m,0)是線段OB上的一個動點,過點P作y軸的平行線,交直線BC于D,交拋物線于E,EF∥x軸,交直線BC于F,DG∥x軸,F(xiàn)G∥y軸,DG與FG交于點G.設四邊形DEFG的面積為S,當m為何值時S最大,最大值是多少?
(3)在坐標平面內是否存在點Q,將△OAC繞點Q逆時針旋轉90°,使得旋轉后的三角形恰好有兩個頂點落在拋物線上.若存在,求出所有符合條件的點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列條件:①∠AB=∠C ②∠ABC=235 ③∠A=B= C;④∠A=∠B=2∠C⑤∠A=∠B= C,其中能確定ABC 為直角三角形的條件有 ( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于 的一元二次方程m +2x-1=0有兩個不相等的實數根,則 的取值范圍是( )
A.m<-1
B.m>1
C.m<1且m≠0
D.m>-1且m≠0

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結論:
①b2>4ac;
②abc>0;
③2a﹣b=0;
④8a+c<0;
⑤9a+3b+c<0,
其中結論正確有( )個。

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若關于x的一元二次方程(x-2)(x-3)=m有實數根x1 , x2 , 且x1 x2有下列結論:
①x1=2,x2=3;②m> ;③二次函數y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標為(2,0)和(3,0).
其中正確的結論是(填正確結論的序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DM、EN分別垂直平分ACBC,交ABMN兩點,DMEN相交于點F

1)若△CMN的周長為15cm,求AB的長;

2)若∠MFN=70°,求∠MCN的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABADAC5,∠DAB=∠DCB90°,則四邊形ABCD的面積為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點O為直線AB上一點,過O點作射線OC,使,將一直角三角板的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)將圖1中的三角板繞點O按逆時針方向旋轉至圖2的位置,使得ON落在射線OB上,此時三角板旋轉的角度為______度;

2)在(1)旋轉過程中,當旋轉至圖3的位置時,使得OM在∠BOC的內部,ON落在直線AB下方,試探究∠COM與∠BON之間滿足什么等量關系,并說明理由.

查看答案和解析>>

同步練習冊答案