【題目】已知:如圖,在正方形ABCD中,點E在AD邊上運動,從點A出發(fā)向點D運動,到達D點停止運動.作射線CE,并將射線CE繞著點C逆時針旋轉(zhuǎn)45°,旋轉(zhuǎn)后的射線與AB邊交于點F,連接EF
(1)依題意補全圖形;
(2)猜想線段DE,EF,BF的數(shù)量關(guān)系并證明;
(3)過點C作CG⊥EF,垂足為點G,若正方形ABCD的邊長是4,請直接寫出點G運動的路線長.
【答案】(1)見解析;(2)EF=DE+BF,見解析;(3)2π
【解析】
(1)依題意補全圖形即可;
(2)延長AD到點H,使DH=BF,連接CH,證明△CDH≌△CBF(SAS).得出CH=CF,∠DCH=∠BCF.證明△ECH≌△ECF(SAS).得出EH=EF.即可得出結(jié)論;
(3)確定點G的運動軌跡,利用弧長公式計算即可.
解:(1)補全圖形如圖1.
(2)線段DE,EF,BF的數(shù)量關(guān)系是 EF=DE+BF
證明:延長AD到點H,使DH=BF,連接CH(如圖2).
易證△CDH≌△CBF.
∴CH= CF,∠DCH=∠BCF.
∵∠ECF=45°,
∴∠ECH=∠ECD+∠DCH= ∠ECD +∠BCF =45°.
∴∠ECH=∠ECF=45°.
又∵CE= CE,
∴△ECH≌△ECF.
∴EH= EF.
∴EF=DE+BF.
(3)點G運動的路線長為2π
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某中學(xué)為了豐富校園文化生活.校學(xué)生會決定舉辦演講、歌唱、繪畫、舞蹈四項比賽,要求每位學(xué)生都參加.且只能參加一項比賽.圍繞“你參賽的項目是什么?(只寫一項)”的問題,校學(xué)生會在全校范圍內(nèi)隨機抽取部分學(xué)生進行問卷調(diào)查。將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請你根據(jù)以上信息回答下列問題:
(1)通過計算補全條形統(tǒng)計圖;
(2)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(3)如果全校有680名學(xué)生,請你估計這680名學(xué)生中參加演講比賽的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知拋物線經(jīng)過點A(0,3),B(3,0),C(4,3).
(1)求拋物線的函數(shù)表達式;
(2)求拋物線的頂點坐標(biāo)和對稱軸;
(3)把拋物線向上平移,使得頂點落在x軸上,直接寫出兩條拋物線、對稱軸和y軸圍成的圖形的面積S(圖②中陰影部分).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為引導(dǎo)學(xué)生廣泛閱讀文學(xué)名著,某校在七年級、八年級開展了讀書知識競賽,該校七、八年級各有學(xué)生人,各隨機抽取名學(xué)生進行了抽樣調(diào)查,獲得了他們知識競賽成績(分),并對數(shù)據(jù)進行整理、描述和分析.下面給出了部分信息.
七年級:
八年級:
成績?nèi)藬?shù) | |||||
七年級 | |||||
八年級 |
平均數(shù)、中位數(shù)、眾數(shù)如表所示:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
七年級 | |||
八年級 |
根據(jù)以上信息,回答下列問題:
, ,_
該校對讀書知識競賽成績不少于分的學(xué)生授予“閱讀小能手”稱號,請你估計該校七、八年級所有學(xué)生中獲得“閱讀小能手”稱號的大約有 人;
結(jié)合以數(shù)據(jù),你認為哪個年級讀書知識競賽的總體成績較好,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=90°,AB=AC=2,D是BC邊上的一個動點,(不與B、C重合)在AC邊上取一點E,使∠ADE=45°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y.
①求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
②求y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近些年全國各地頻發(fā)霧霾天氣,給人民群眾的身體健康帶來了危害,某商場看到商機后決定購進甲、乙兩種空氣凈化器進行銷售.若每臺甲種空氣凈化器的進價比每臺乙種空氣凈化器的進價少300元,且用6000元購進甲種空氣凈化器的數(shù)量與用7500元購進乙種空氣凈化器的數(shù)量相同.
(1)求每臺甲種空氣凈化器、每臺乙種空氣凈化器的進價分別為多少元?
(2)若該商場準(zhǔn)備進貨甲、乙兩種空氣凈化器共30臺,且進貨花費不超過42000元,問最少進貨甲種空氣凈化器多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2個A種工藝品和3個B種工藝品需花費520元.
(1)求A,B兩種工藝品的單價;
(2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?
(3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若A,B兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一房間內(nèi)A、B兩點之間設(shè)有探測報警裝置,小車(不計大。┰诜块g內(nèi)運動,當(dāng)小車從AB之間(不包括A、B兩點)經(jīng)過時,將觸發(fā)報警.現(xiàn)將A、B兩點放置于平面直角坐標(biāo)系中,(如圖),已知點A、B的坐標(biāo)分別為(0,4),(4,4),小車沿拋物線(<0)運動.若小車在運動過程中觸發(fā)兩次報警裝置,則的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球和足球.已知購買20個籃球和40個足球的總金額為4600元;購買30個籃球和50個足球的總金額為6100元.
(1)每個籃球、每個足球的價格分別為多少元?
(2)若該校購買籃球和足球共60個,且購買籃球的總金額不超過購買足球的總金額,則該校最多可購買多少個籃球?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com