在△ABC中,AD是BC邊上的高,且,E、F分別是AB、AC的中點,以EF為直徑的圓與BC位置關系是(    )
A. 相離          B. 相切;        C. 相交;        D. 相切或相交.
B
解:如圖,

∵E,F(xiàn)分別是AB,AC的中點,
∴EF∥BC,EF= BC,                          
∵AD是BC上的高,且AD= BC,
∴EF=AD,
∴OD=OA= AD= EF;
所以以EF為直徑的圓的圓心到直線BC的距離等于OD
即以EF為直徑的圓與BC的位置關系是相切.
故選B.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,等邊三角形OAB的邊長為2,將線段OB繞著點O逆時針旋轉60°得到線段OC,連結BC。

(1)試判定四邊形OABC的形狀;
(2)求點O到BC的距離;
(3)以O為圓心,r為半徑作⊙O,根據(jù)⊙O與四邊形OABC四條邊交點的總個數(shù),求相應r的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠A=90º,ABAC=2.以BC的中點O為圓心的圓弧分別與AB、AC相切于點DE,則圖中陰影部分的面積是【   】
A.1-B.C.1-D.2-

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在△ABC中,∠C=90°,AB=5,BC=4,以A為圓心,以3為半徑作圓,則點C與⊙A的位置關系為             .

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

某施工工地安放了一個圓柱形飲水桶的木制支架(如圖1),若不計木條的厚
度,其俯視圖如圖2所示,已知AD垂直平分BC,AD=BC=48cm,則圓柱形飲水桶的底面半徑的最大值
   ▲    cm.  

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,某公園的一座石拱橋是圓弧形(劣。淇缍葹24米,拱的半徑為13米,則拱高為(     )
A.5米B.5C.7米D.8米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

有一個底面半徑為3cm,母線長10cm的圓錐,則其側面積是    ▲   cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

定義:P、Q分別是兩條線段a和b上任意一點,線段PQ長度的最小值叫做線段與線段的距離.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點.
(1)根據(jù)上述定義,當m=2,n=2時,如圖1,線段BC與線段OA的距離是_____,
當m=5,n=2時,如圖2,線段BC與線段OA的距離(即線段AB的長)為______

(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關于m的函數(shù)解析式.
(3)當m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M.
①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點的三角形與△AOD相似,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知扇形的半徑為3 cm,圓心角為1200,則此扇形的的弧長是    ▲   cm,扇形的面積是    ▲   cm2(結果保留π)。

查看答案和解析>>

同步練習冊答案