下列各式中, 計算正確的是

[  ]

A. (-2a)2=-4a2           B. (am)3=am+3

C. (a-2b)2=a2-4ab-4b2      D. (a+2b)2=a2+4ab+4b2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、(1)通過計算比較下列各式中兩數(shù)的大。海ㄌ睢埃尽、“<”或“=”)
①12
21,②23
32,③34
43,
④45
54,⑤56
65,…
(2)由(1)可以猜測nn+1與(n+1)n(n為正整數(shù))的大小關系:當n
≤2
時,nn+1<(n+1)n;當n
≥3
時,nn+1>(n+1)n
(3)根據(jù)上面的猜想,可以知道:20082009
20092008

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)通過計算比較下列各式中兩數(shù)的大小:(填“>”、“<”或“=”)
①1-2
 
2-1,②2-3
 
3-2,③3-4
 
4-3,④4-5
 
5-4,…
(2)由(1)可以猜測n-(n+1)與(n+1)-n (n為正整數(shù))的大小關系:
當n 
 
 時,n-(n+1)>(n+1)-n;當n 
 
 時,n-(n+1)<(n+1)-n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、從“特殊到一般”是數(shù)學上常用的一種思維方法.例如,“你會比較20112012與20122011的大小嗎?”我們可以采用如下的方法:
(1)通過計算比較下列各式中兩數(shù)的大。海ㄌ睢埃尽、“<”或“=”)
①12
21,②23
32,③34
43,④45
54,⑤56
65,…
(2)由(1)可以猜測nn+1與(n+1) n (n為正整數(shù))的大小關系:
當n
≤2
時,nn+1<(n+1)n;當n
>2
時,nn+1>(n+1)n
(3)根據(jù)上面的猜想,可以知道:20112012
20122011(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

從“特殊到一般”是數(shù)學上常用的一種思維方法.例如,“你會比較20112012與20122011的大小嗎?”我們可以采用如下的方法:
(1)通過計算比較下列各式中兩數(shù)的大小:(填“>”、“<”或“=”)
①12______21,②23______32,③34______43,④45______54,⑤56______65,…
(2)由(1)可以猜測nn+1與(n+1) n (n為正整數(shù))的大小關系:
當n______時,nn+1<(n+1)n;當n______時,nn+1>(n+1)n;
(3)根據(jù)上面的猜想,可以知道:20112012______20122011(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省期中題 題型:解答題

(1)通過計算比較下列各式中兩數(shù)的大。海ㄌ睢埃尽薄ⅰ埃肌被颉=”)
①12_____________21,②23___________32,③34___________43
④45_____________54,⑤56___________65,……
(2)由(1)可以猜測nn+1與(n+1)n(n為正整數(shù))的大小關系:
當n______時,nn+1<(n+1)n;當n___________時,nn+1>(n+1)n;
(3)根據(jù)上面的猜想,可以知道:20082009___________20092008。

查看答案和解析>>

同步練習冊答案