【題目】如圖,正方形ABCD和正方形A1B1C1D1的對角線(正方形相對頂點(diǎn)之間所連的線段)BDB1D1都在x軸上,O,O1分別為正方形ABCD和正方形A1B1C1D1的中心(正方形對角線的交點(diǎn)稱為正方形的中心),O為平面直角坐標(biāo)系的原點(diǎn).OD=3,O1D1=2.

(1)如果O1x軸上平移時,正方形A1B1C1D1也隨之平移,其形狀、大小沒有改變,當(dāng)中心O1x軸上平移到兩個正方形只有一個公共點(diǎn)時,求此時正方形A1B1C1D1各頂點(diǎn)的坐標(biāo);

(2)如果Ox軸上平移時,正方形ABCD也隨之平移,其形狀、大小沒有改變,當(dāng)中心Ox軸上平移到兩個正方形公共部分的面積為2個平方單位時,求此時正方形ABCD各頂點(diǎn)的坐標(biāo).

【答案】(1)A1(5,2),B1(3,0),C1(5,-2),D1(7,0);(2)A(11,3),B(8,0),C(11,-3),D(14,0).

【解析】

(1),兩個正方形只有一個公共點(diǎn)時,分DB1為公共點(diǎn),BD1為公共點(diǎn)兩種情況,結(jié)合平移的性質(zhì)寫出各點(diǎn)的坐標(biāo);

(2),根據(jù)兩個正方形的位置可知公共部分肯定是個正方形,面積是2,可以算出它的對角線長為2,所以有兩種情況:點(diǎn)DO1重合,點(diǎn)BO1重合,據(jù)此解答.

解:(1)當(dāng)點(diǎn)B1與點(diǎn)D重合時,兩個正方形只有一個公共點(diǎn),此時A1(5,2),B1(3,0),C1(5,-2),D1(7,0);當(dāng)點(diǎn)BD1重合時,兩個正方形只有一個公共點(diǎn),此時A1(-5,2),B1(-7,0),C1(-5,-2),D1(-3,0).

(2)當(dāng)點(diǎn)DO1重合時,兩個正方形公共部分的面積為2個平方單位,此時A(5,3),B(2,0),C(5,-3),D(8,0);當(dāng)點(diǎn)BO1重合時,兩個正方形公共部分的面積為2個平方單位,此時A(11,3),B(8,0),C(11,-3),D(14,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,…,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次后,頂點(diǎn)A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)三角形中位線的性質(zhì)時,小亮對課本給出的解決辦法進(jìn)行了認(rèn)真思考: 請你利用小亮的發(fā)現(xiàn)解決下列問題:
(1)如圖1,AD是△ABC的中線,BE交AC于E,交AD于E,且AE=EF,求證:AC=BF. 請你幫助小亮寫出輔助線作法并完成論證過程:

(2)解決問題:如圖2,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位線,過點(diǎn)D、E作DF∥EG,分別交BC于F、G,過點(diǎn)A作MN∥BC,分別與FE、GE的延長線交于M、N,則四邊形MFGN周長的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】豐富的圖形世界里有奇妙的數(shù)量關(guān)系,讓我們通過下面這些幾何體開始神奇的探索之旅.

觀察:下面這些幾何體都是簡單幾何體,請您仔細(xì)觀察.

統(tǒng)計:每個幾何體都會有棱(棱數(shù)為E)、面(面數(shù)為F)、頂點(diǎn)(頂點(diǎn)數(shù)為V),現(xiàn)將有關(guān)數(shù)據(jù)統(tǒng)計,完成下表

幾何體

a

b

c

d

e

棱數(shù)(E)

6

9

15

面數(shù)(F)

4

5

5

6

頂點(diǎn)數(shù)(V)

4

5

8

發(fā)現(xiàn):(1)簡單幾何中, ;

(2)簡單幾何中,每條棱都是 個面的公共邊;

(3)在正方體中,每個頂點(diǎn)處有 條棱,每條棱都有 個頂點(diǎn),所以有23

應(yīng)用:有一個十二面體簡單幾何體,它有十二個面,每個面都是五邊形,它的每個頂點(diǎn)處都有相同數(shù)目的棱.請問它有 條棱, 個頂點(diǎn),每個頂點(diǎn)處有 條棱

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA是⊙O的半徑,BC是⊙O的弦,且BC⊥OA,過BC的延長線上一點(diǎn)D作⊙O的切線DE,切點(diǎn)為E,連接AB,BE,若∠BDE=52°,則∠ABE的度數(shù)是(
A.52°
B.58°
C.60°
D.64°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=6,∠DAB=60°,點(diǎn)E在BC邊上,且CE=2,AE與BD交于點(diǎn)F,連接CF,則下列結(jié)論不正確的是(
A.△ABF≌△CBF
B.△ADF∽△EBF
C.tan∠EAB=
D.SEAB=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張同學(xué)在計算時,將“”錯看成了“”,得出的結(jié)果是

(1)請你求出這道題的正確結(jié)果;

(2)試探索:當(dāng)字母滿足什么關(guān)系時,(1)中的結(jié)果與字母的取值無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用題.

(1)商店出售茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,該商品制定了兩種優(yōu)惠方法:

買一只茶壺贈一只茶杯;按總價的90%付款.某顧客購買茶壺5只,茶杯若干只(不少于5只),問顧客買多少只茶杯時,兩種方法付款相同.假如該顧客買了茶杯20只,哪種買法實(shí)惠?

(2)某人原計劃騎車以每小時12千米的速度由A地到B地,這樣便可在規(guī)定的時間到達(dá),但他因事將原計劃出發(fā)的時間推遲了20分鐘,只好以每小時15千米的速度前進(jìn),結(jié)果比規(guī)定時間早4分鐘到達(dá)B地,求A,B兩地間的距離.

(3)某工廠完成一批產(chǎn)品,一車間單獨(dú)完成需30天,二車間單獨(dú)完成需20天.

如一車間先做若干天,然后由二車間繼續(xù)做,直至完成,前后共做了25天,問一車間先做了幾天?

如一車間先做了3天后,二車間加入一起做,還需多少天才能完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距 千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.

(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案