【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點叫做這條拋物線的“方點”.試求拋物線的“方點”的坐標(biāo);
(2)如圖,若將該拋物線向左平移1個單位長度,新拋物線與軸相交于、兩點(在左側(cè)),與軸相交于點,連接.若點是直線上方拋物線上的一點,求的面積的最大值;
(3)第(2)問中平移后的拋物線上是否存在點,使是以為直角邊的直角三角形?若存在,直接寫出所有符合條件的點的坐標(biāo);若不存在,說明理由.
【答案】(1)拋物線的方點坐標(biāo)是,;(2)當(dāng)時,的面積最大,最大值為;(3)存在,或
【解析】
(1)由定義得出x=y,直接代入求解即可
(2)作輔助線PD平行于y軸,先求出拋物線與直線的解析式,設(shè)出點P的坐標(biāo),利用點坐標(biāo)求出PD的長,進而求出面積的二次函數(shù),再利用配方法得出最大值
(3)通過拋物線與直線的解析式可求出點B,C的坐標(biāo),得出△OBC為等腰直角三角形,過點C作交x軸于點M,作交y軸于點N,得出M,N的坐標(biāo),得出直線BN、MC的解析式然后解方程組即可.
解:(1)由題意得:∴
解得,
∴拋物線的方點坐標(biāo)是,.
(2)過點作軸的平行線交于點.
易得平移后拋物線的表達式為,直線的解析式為.
設(shè),則.
∴
∴
∴當(dāng)時,的面積最大,最大值為.
(3)如圖所示,過點C作交x軸于點M,作交y軸于點N
由已知條件得出點B的坐標(biāo)為B(3,0),C的坐標(biāo)為C(0,3),
∴△COB是等腰直角三角形,
∴可得出M、N的坐標(biāo)分別為:M(-3,0),N(0,-3)
直線CM的解析式為:y=x+3
直線BN的解析式為:y=x-3
由此可得出:或
解方程組得出:或
∴或
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】省教育廳決定在全省中小學(xué)開展“關(guān)注校車、關(guān)愛學(xué)生”為主題的交通安全教育宣傳周活動,某中學(xué)為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機抽查了部分學(xué)生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖(如圖所示),請根據(jù)圖中提供的信息,解答下列問題.
(1)m= %,這次共抽取 名學(xué)生進行調(diào)查;并補全條形圖;
(2)在這次抽樣調(diào)查中,采用哪種上學(xué)方式的人數(shù)最多?
(3)如果該校共有1500名學(xué)生,請你估計該校騎自行車上學(xué)的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.求作⊙O,使得點O在邊AB上,且⊙O經(jīng)過B、D兩點;并證明AC與⊙O相切.(尺規(guī)作圖,保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有兩點A(6,0),B(0,3),如果點C在x軸上(C與A不重合),當(dāng)點C的坐標(biāo)為 時,△BOC與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)絡(luò)比網(wǎng)絡(luò)的傳輸速度快10倍以上,因此人們對產(chǎn)品充滿期待.華為集團計劃2020年元月開始銷售一款產(chǎn)品.根據(jù)市場營銷部的規(guī)劃,該產(chǎn)品的銷售價格將隨銷售月份的變化而變化.若該產(chǎn)品第個月(為正整數(shù))銷售價格為元/臺,與滿足如圖所示的一次函數(shù)關(guān)系:且第個月的銷售數(shù)量(萬臺)與的關(guān)系為.
(1)該產(chǎn)品第6個月每臺銷售價格為______元;
(2)求該產(chǎn)品第幾個月的銷售額最大?該月的銷售價格是多少元/臺?
(3)若華為董事會要求銷售該產(chǎn)品的月銷售額不低于27500萬元,則預(yù)計銷售部符合銷售要求的是哪幾個月?
(4)若每銷售1萬臺該產(chǎn)品需要在銷售額中扣除元推廣費用,當(dāng)時銷售利潤最大值為22500萬元時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系x0y中,對于圖形G,若存在一個正方形γ,這個正方形的某條邊與x軸垂直,且圖形G上的所有的點都在該正方形的內(nèi)部或者邊上,則稱該正方形γ為圖形G的一個正覆蓋.很顯然,如果圖形G存在一個正覆蓋,則它的正覆蓋有無數(shù)個,我們將圖形G的所有正覆蓋中邊長最小的一個,稱為它的緊覆蓋.如圖所示,圖形G為三條線段和一個圓弧組成的封閉圖形,圖中的三個正方形均為圖形G的正覆蓋,其中正方形ABCD就是圖形G的緊覆蓋.
(1)對于半徑為2的⊙0,它的緊覆蓋的邊長為 .
(2)如圖1,點P為直線y=-2x+3上一動點,若線段OP的緊覆蓋的邊長為2,求點P的坐標(biāo);
(3)如圖2,直線y=3x+3與x軸,y軸分別交于A,B,
①以0為圓心,r為半徑的⊙0與線段AB有公共點,且由⊙0與線段AB組成的圖形G的緊覆蓋的邊長小于4,直接寫出r的取值范圍;
②若在拋物線y=ax2+2ax-2(a≠0)上存在點C,使得△ABC的緊覆蓋的邊長為3,直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李在學(xué)習(xí)了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:
(1)他認(rèn)為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.
(2)如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結(jié)論)
(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com