在△ABC中,它的底邊是a,底邊上的高是h,則三角形面積S=
1
2
ah,當a為定長時,在此式中(  )
A、S,h是變量,
1
2
,a是常量
B、S,h,a是變量,
1
2
是常量
C、S,h是變量,
1
2
,S是常量
D、S是變量,
1
2
,a,h是常量
分析:根據(jù)函數(shù)的定義:對于函數(shù)中的每個值x,變量y按照一定的法則有一個確定的值y與之對應;來解答即可.
解答:解:∵三角形面積S=
1
2
ah,
∴當a為定長時,在此式中S、h是變量,
1
2
,a是常量;
故本題選A.
點評:函數(shù)的定義:設x和y是兩個變量,D是實數(shù)集的某個子集,若對于D中的每個值x,變量y按照一定的法則有一個確定的值y與之對應,稱變量y為變量x的函數(shù),記作y=f(x);變量是指在程序的運行過程中隨時可以發(fā)生變化的量.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

黃金分割比是生活中比較多見的一種長度比值,它能給人許多美感和科學性,我們初中階段學過的許多幾何圖形也有著類似的邊長比例關系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比
5
-1
2
,底角平分線與腰的交點為黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你證明點D是腰AB的黃金分割點;
(2)如圖2,在△ABC中,AB=AC,若
AB
BC
=
5
-1
2
,則請你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對邊分別為a,b,c.若點D是AB的黃金分割點,那么該直角三角形的三邊a,b,c之間是什么數(shù)量關系?并證明你的結論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖(1)AD是△ABC中BC邊的中線,則S△ABD=S△ACD,依據(jù)是
等底同高
等底同高

(2)如圖2梯形ABCD中,AD∥BC,對角線AC、BD交于點O,請找出圖中三對面積相等的三角形,
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC
△ADC和△ADB;△ABC和△DBC;△AOB和△DOC

(3)李明家有一塊四邊形田地,如圖3所示.AE是一條小路,它把田地分成了面積相等的兩部分(小路寬忽略不計).在CD邊上點F處有一口水井,為方便灌溉田地,李明打算過點F修一條筆直的水渠,且要求水渠也把整個田地分成面積相等的兩部分(水渠寬忽略不計).請你幫李明設計出修水渠的方案,作圖并寫出設計方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,有一塊直角三角形土地,它兩條直角邊AB=300米,AC=400米,某單位要沿著斜邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上,設EF為x,矩形面積為y.
(1)求△ABC中BC上的高AH;
(2)求y與x之間的函數(shù)關系;
(3)當矩形的長x取何值時,這個矩形的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年甘肅省中考數(shù)學仿真模擬試卷(解析版) 題型:解答題

如圖,有一塊直角三角形土地,它兩條直角邊AB=300米,AC=400米,某單位要沿著斜邊BC修一座底面是矩形DEFG的大樓,D、G分別在邊AB、AC上,設EF為x,矩形面積為y.
(1)求△ABC中BC上的高AH;
(2)求y與x之間的函數(shù)關系;
(3)當矩形的長x取何值時,這個矩形的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

黃金分割比是生活中比較多見的一種長度比值,它能給人許多美感和科學性,我們初中階段學過的許多幾何圖形也有著類似的邊長比例關系.例如我們熟悉的頂角是36°的等腰三角形,其底與腰之比就為黃金分割比數(shù)學公式,底角平分線與腰的交點為黃金分割點.
(1)如圖1,在△ABC中,∠A=36°,AB=AC,∠ACB的角平分線CD交腰AB于點D,請你證明點D是腰AB的黃金分割點;
(2)如圖2,在△ABC中,AB=AC,若數(shù)學公式,則請你求出∠A的度數(shù);
(3)如圖3,如果在Rt△ABC中,∠ACB=90°,CD為AB上的高,∠A、∠B、∠ACB的對邊分別為a,b,c.若點D是AB的黃金分割點,那么該直角三角形的三邊a,b,c之間是什么數(shù)量關系?并證明你的結論.

查看答案和解析>>

同步練習冊答案