【題目】(性質(zhì)探究)
如圖,在矩形ABCD中,對角線AC,BD相交于點O,AE平分∠BAC,交BC于點E.作DF⊥AE于點H,分別交AB,AC于點F,G.
(1)判斷△AFG的形狀并說明理由.
(2)求證:BF=2OG.
(遷移應用)
(3)記△DGO的面積為S1,△DBF的面積為S2,當時,求的值.
(拓展延伸)
(4)若DF交射線AB于點F,(性質(zhì)探究)中的其余條件不變,連結(jié)EF,當△BEF的面積為矩形ABCD面積的時,請直接寫出tan∠BAE的值.
【答案】(1)等腰三角形,理由見解析;(2)見解析;(3);(4)或
【解析】
(1)如圖1中,△AFG是等腰三角形,利用全等三角形的性質(zhì)證明即可.
(2)如圖2中,過點O作OL∥AB交DF于L,則∠AFG=∠OLG.首先證明OG=OL,再證明BF=2OL即可解決問題.
(3)如圖3中,過點D作DK⊥AC于K,則∠DKA=∠CDA=90°,利用相似三角形的性質(zhì)解決問題即可.
(4)設OG=a,AG=k.分兩種情形:①如圖4中,連接EF,當點F在線段AB上時,點G在OA上.②如圖5中,當點F在AB的延長線上時,點G在線段OC上,連接EF.分別求解即可解決問題.
(1)解:如圖1中,△AFG是等腰三角形.
理由:∵AE平分∠BAC,
∴∠1=∠2,
∵DF⊥AE,
∴∠AHF=∠AHG=90°,
∵AH=AH,
∴△AHF≌△AHG(ASA),
∴AF=AG,
∴△AFG是等腰三角形.
(2)證明:如圖2中,過點O作OL∥AB交DF于L,則∠AFG=∠OLG.
∵AF=AG,
∴∠AFG=∠AGF,
∵∠AGF=∠OGL,
∴∠OGL=∠OLG,
∴OG=OL,
∵OL∥AB,
∴△DLO∽△DFB,
∴,
∵四邊形ABCD是矩形,
∴BD=2OD,
∴BF=2OL,
∴BF=2OG.
(3)解:如圖3中,過點D作DK⊥AC于K,則∠DKA=∠CDA=90°,
∵∠DAK=∠CAD,
∴△ADK∽△ACD,
∴,
∵S1=OGDK,S2=BFAD,
又∵BF=2OG,,
∴,設CD=2x,AC=3x,則AD= ,
∴.
(4)解:設OG=a,AG=k.
①如圖4中,連接EF,當點F在線段AB上時,點G在OA上.
∵AF=AG,BF=2OG,
∴AF=AG=k,BF=2a,
∴AB=k+2a,AC=2(k+a),
∴AD2=AC2﹣CD2=[2(k+a)]2﹣(k+2a)2=3k2+4ka,
∵∠ABE=∠DAF=90°,∠BAE=∠ADF,
∴△ABE∽△DAF,
∴,
∴,
∴,
由題意:=AD(k+2a),
∴AD2=10ka,
即10ka=3k2+4ka,
∴k=2a,
∴AD= ,
∴BE= = ,AB=4a,
∴tan∠BAE= .
②如圖5中,當點F在AB的延長線上時,點G在線段OC上,連接EF.
∵AF=AG,BF=2OG,
∴AF=AG=k,BF=2a,
∴AB=k﹣2a,AC=2(k﹣a),
∴AD2=AC2﹣CD2=[2(k﹣a)]2﹣(k﹣2a)2=3k2﹣4ka,
∵∠ABE=∠DAF=90°,∠BAE=∠ADF,
∴△ABE∽△DAF,
∴,
∴,
∴ ,
由題意:=AD/span>(k﹣2a),
∴AD2=10ka,
即10ka=3k2﹣4ka,
∴k= ,
∴AD= ,
∴,AB= ,
∴tan∠BAE= ,
綜上所述,tan∠BAE的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,三角形A’B’C是由三角形ABC經(jīng)過某種平移得到的,點A與點A’,點B與點B’,點C與點C’分別對應,觀察點與點坐標之間的關(guān)系,解答下列問題.
(1)分別寫出點A、點B、點C、點A’、點B’、點C’的坐標,并說明三角形A’B’C’是由三角ABC經(jīng)過怎樣的平移得到的.
(2)若點M (a+2, 4-b)是點N (2a-3, 2b- 5)通過(1)中的變換得到的,求a和b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣活動課上,小致將等腰的底邊與直線重合.
(1)如圖,在中,,點在邊所在的直線上移動,根據(jù)“直線外一點到直線上所有點的連線中垂線段最短”,小致發(fā)現(xiàn)的最小值是____________.
(2)為進一步運用該結(jié)論,在(1)的條件下,小致發(fā)現(xiàn),當最短時,如圖,在中,作平分交于點點分別是邊上的動點,連結(jié)小致嘗試探索的最小值,小致在上截取使得連結(jié)易證,從而將轉(zhuǎn)化為轉(zhuǎn)化到(1)的情況,則的最小值為 ;
(3)解決問題:如圖,在中,,點是邊上的動點,連結(jié)將線段繞點順時針旋轉(zhuǎn),得到線段連結(jié),求線段的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由七根連桿鏈接而成的機械裝置,圖2是其示意圖.已知O,P兩點固定,連桿PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P兩點間距與OQ長度相等.當OQ繞點O轉(zhuǎn)動時,點A,B,C的位置隨之改變,點B恰好在線段MN上來回運動.當點B運動至點M或N時,點A,C重合,點P,Q,A,B在同一直線上(如圖3).
(1)點P到MN的距離為_____cm.
(2)當點P,O,A在同一直線上時,點Q到MN的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“震災無情人有情”.民政局將全市為四川受災地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運往受災地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運輸費4000元,乙種貨車每輛需付運輸費3600元.民政局應選擇哪種方案可使運輸費最少?最少運輸費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,過點P(0,a)作直線l分別交于點M、N,
(1)若m=4,MN∥x軸,,求n的值;
(2)若a=5,PM=PN,點M的橫坐標為3,求m-n的值;
(3)如圖,若m=4,n=-6,點A(d,0)為x軸的負半軸上一點,B為x軸上點A右側(cè)一點,AB=4,以AB為一邊向上作正方形ABCD,若正方形ABCD與都有交點,求d的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】冬季來臨,某網(wǎng)店準備在廠家購進,兩種暖手寶共個用于銷售,若購買種暖手寶個,種暖手寶個,需要元;若購買種暖手寶個,種暖手寶個,則需要元
(1)購買,兩種暖手寶每個各需多少元?
(2)①由于資金限制,用于購買這兩種暖手寶的資金不能超過元,設購買種暖手寶個,求的取值范圍;
②在①的條件下,購進種暖手寶不能少于個,則有哪幾種購買方案?
(3)購買后,若一個種暖手寶運費為元,一個種暖手寶運費為元,在第問的各種購買方案中,購買個暖手寶,哪一種購買方案所付的運費最少?最少運費是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com