【題目】某校為了解七年級(jí)學(xué)生的體重情況,隨機(jī)抽取了七年級(jí)m名學(xué)生進(jìn)行調(diào)查,將抽取學(xué)生的體重情況繪制如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

組別

體重(千克)

人數(shù)

A

37.5≤x42.5

10

B

42.5≤x47.5

n

C

47.5≤x52.5

40

D

52.5≤x57.5

20

E

57.5≤x62.5

10

請(qǐng)根據(jù)圖表信息回答下列問題:

1)填空:①m=_____,②n=_____,③在扇形統(tǒng)計(jì)圖中,C組所在扇形的圓心角的度數(shù)等于_______度;

2)若把每組中各個(gè)體重值用這組數(shù)據(jù)的中間值代替(例如:A組數(shù)據(jù)中間值為40千克),則被調(diào)查學(xué)生的平均體重是多少千克?

3)如果該校七年級(jí)有1000名學(xué)生,請(qǐng)估算七年級(jí)體重低于47.5千克的學(xué)生大約有多少人?

【答案】1)①100,②20,③144;(2)被被抽取同學(xué)的平均體重為50千克;(3)七年級(jí)學(xué)生體重低于47.5千克的學(xué)生大約有300人.

【解析】

(1)①m=20÷20%=100,②n=100-10-40-20-10=20,③c=×360°=144°;
(2)被抽取同學(xué)的平均體重為:

(千克);
(3)七年級(jí)學(xué)生體重低于47.5千克的學(xué)生1000×30%=300(人).

1)①100,②20,③144;

2)被抽取同學(xué)的平均體重為:

答:被抽取同學(xué)的平均體重為50千克.

3

答:七年級(jí)學(xué)生體重低于47.5千克的學(xué)生大約有300人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸、y軸分別交于點(diǎn)AB,與反比例函數(shù)y=的圖象在第四象限交于點(diǎn)C,CDx軸于點(diǎn)DtanOAB2,OA2OD1

(1)求該反比例函數(shù)的表達(dá)式;

(2)點(diǎn)M是這個(gè)反比例函數(shù)圖象上的點(diǎn),過點(diǎn)MMNy軸,垂足為點(diǎn)N,連接OM、AN,如果SABN2SOMN,直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會(huì),鼓勵(lì)更多的學(xué)生參與到志愿服務(wù)中來,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動(dòng).為了了解兩所學(xué)校學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(jī)(百分制),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行整理、描述和分析.下面給出了部分信息.

a.甲學(xué)校學(xué)生成績(jī)的頻數(shù)分布直方圖如圖:

b.甲學(xué)校學(xué)生成績(jī)?cè)?/span>8090這一組的是:

80

80

81

81

82

82

83

83

85

86

86

87

88

88

89

89

c.乙學(xué)校學(xué)生成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

85

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學(xué)校學(xué)生成績(jī)的中位數(shù)為 分;

2)甲學(xué)校學(xué)生A、乙學(xué)校學(xué)生B的綜合素質(zhì)展示成績(jī)同為83分,這兩人在本校學(xué)生中的綜合素質(zhì)展示排名更靠前的是 (填“A”或“B);

3)根據(jù)上述信息,推斷哪所學(xué)校綜合素質(zhì)展示的水平更高,并至少從兩個(gè)不同的角度說明推斷的合理性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在中,,點(diǎn)的中點(diǎn).

1)若點(diǎn)、分別是、的中點(diǎn),則線段的數(shù)量關(guān)系是 ;線段的位置關(guān)系是 ;

2)如圖①,若點(diǎn)、分別是、上的點(diǎn),且,上述結(jié)論是否依然成立,若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

3)如圖②,若點(diǎn)、分別為、延長(zhǎng)線上的點(diǎn),且,直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠ABC90°,DBDC,EBC的中點(diǎn),連接DE

1)求證:四邊形ABED是矩形;

2)連接AC,若∠ABD30°,DC2,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的發(fā)展,智能產(chǎn)品越來越受到人們的喜愛,為了獎(jiǎng)勵(lì)員工,某公司打算采購一批智能音箱.現(xiàn)有A,B兩款智能音箱可供選擇,已知A款音箱的單價(jià)比B款音箱的單價(jià)高50元,購買5個(gè)A款音箱和4個(gè)B款音箱共需1600元.

1)分別求出A款音箱和B款音箱的單價(jià);

2)公司打算采購A,B兩款音箱共20個(gè),且采購A,B兩款音箱的總費(fèi)用不超過3500元,那么A款音箱最多采購多少個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象l與坐標(biāo)軸分別交于點(diǎn)E、F,與雙曲線y=(x0)交于點(diǎn)P(﹣1,n),且F是PE的中點(diǎn).

(1)求直線l的解析式;

(2)若直線x=a與l交于點(diǎn)A,與雙曲線交于點(diǎn)B(不同于A),問a為何值時(shí),PA=PB?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC10厘米,BC12厘米,DBC的中點(diǎn),點(diǎn)PB出發(fā),以a厘米/秒(a0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們的運(yùn)動(dòng)時(shí)間為t.

1)若a2,那么t為何值時(shí)△BPQ與△BDA相似?

2)已知MAC上一點(diǎn),若當(dāng)t時(shí),四邊形PQCM是平行四邊形,求這時(shí)點(diǎn)P的運(yùn)動(dòng)速度.

3)在P、Q兩點(diǎn)運(yùn)動(dòng)過程中,要使線段PQ在某一時(shí)刻平分△ABD的面積,點(diǎn)P的運(yùn)動(dòng)速度應(yīng)限制在什么范圍內(nèi)?(提示:對(duì)于一元二次方程,有如下的結(jié)論:若x1x2是方程ax2+bx+c0a≠0)的兩個(gè)根,則x1+x2=﹣x1x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,四邊形是平行四邊形,,上一點(diǎn),滿足于點(diǎn),連接

1)如圖,連接,若,求的周長(zhǎng);

2)如圖,延長(zhǎng),交于點(diǎn),若.求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案