【題目】每年5月份是心理健康宣傳月,某中學(xué)開展以“關(guān)心他人,關(guān)愛自己”為主題的心理健康系列活動.為了解師生的心理健康狀況,對全體2000名師生進行了心理測評,隨機抽取20名師生的測評分?jǐn)?shù)進行了以下數(shù)據(jù)的整理與
①數(shù)據(jù)收集:抽取的20名師生測評分?jǐn)?shù)如下
85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.
②數(shù)據(jù)整理:將收集的數(shù)據(jù)進行分組并評價等第:
分?jǐn)?shù)x | |||||
人數(shù) | 5 | a | 5 | 2 | 1 |
等第 |
③數(shù)據(jù)繪制成不完整的扇形統(tǒng)計圖:
④依據(jù)統(tǒng)計信息回答問題
(1)統(tǒng)計表中的 .
(2)心理測評等第等的師生人數(shù)所占扇形的圓心角度數(shù)為 .
(3)學(xué)校決定對等的師生進行團隊心理輔導(dǎo),請你根據(jù)數(shù)據(jù)分析結(jié)果,估計有多少師生需要參加團隊心理輔導(dǎo)?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB,CD是圓O的直徑,AE是圓O的弦,且AE∥CD,過點C的圓O切線與EA的延長線交于點P,連接AC.
(1)求證:AC平分∠BAP;
(2)求證:PC2=PAPE;
(3)若AE-AP=PC=4,求圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:
(1)如圖1,已知△ABC,試確定一點D,使得以A,B,C,D為頂點的四邊形為平行四邊形,請畫出這個平行四邊形;
問題探究:
(2)如圖2,在矩形ABCD中,AB=4,BC=10,若要在該矩形中作出一個面積最大的△BPC,且使∠BPC=90°,求滿足條件的點P到點A的距離;
問題解決:
(3)如圖3,有一座草根塔A,按規(guī)定,要以塔A為對稱中心,建一個面積盡可能大的形狀為平行四邊形的草根景區(qū)BCDE。根據(jù)實際情況,要求頂點B是定點,點B到塔A的距離為50米,∠CBE=120°,那么,是否可以建一個滿足要求的面積最大的平行四邊形景區(qū)BCDE?若可以,求出滿足要求的平行四邊形BCDE的最大面積;若不可以,請說明理由。(塔A的占地面積忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、BC上,且AE=BF=1,CE、DF交于點O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,④中,正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1(1,)在直線l1:y=x上,過點A1作A1B1⊥l1交直線l2:y=x于點B1,A1B1為邊在△OA1B1外側(cè)作等邊三角形A1B1C1,再過點C1作A2B2⊥l1,分別交直線l1和l2于A2,B2兩點,以A2B2為邊在△OA2B2外側(cè)作等邊三角形A2B2C2,…按此規(guī)律進行下去,則第2019個等邊三角形的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點是等邊三角形內(nèi)的一點,,將繞點按順時針旋轉(zhuǎn)得到,則下列結(jié)論不正確的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動的情況,某中學(xué)對學(xué)生每天參加戶外活動的時間進行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:
(I).被抽查的學(xué)生有_____人,抽查的學(xué)生中每天戶外活動時間是1.5小時的有_____人;
(II).求被抽查的學(xué)生的每天戶外活動時間的眾數(shù)、中位數(shù)和平均數(shù);
(III).該校共有1200名學(xué)生,請估計該校每天戶外活動時間超過1小時的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快車從甲地駛向乙地,慢車從乙地駛向甲地,兩車同時出發(fā)并且在同一條公路上勻速行駛,途中快車休息1.5小時,慢車沒有休息.設(shè)慢車行駛的時間為x小時,快車行駛的路程為千米,慢車行駛的路程為千米.如圖中折線OAEC表示與x之間的函數(shù)關(guān)系,線段OD表示與x之間的函數(shù)關(guān)系.
請解答下列問題:
(1)求快車和慢車的速度;
(2)求圖中線段EC所表示的與x之間的函數(shù)表達式;
(3)線段OD與線段EC相交于點F,直接寫出點F的坐標(biāo),并解釋點F的實際意義.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com