【題目】如圖所示,在等腰直角△ABC中,∠B=90°,將△ABC繞點(diǎn) A逆時(shí)針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于(

A.105°
B.120°
C.135°
D.150°

【答案】A
【解析】 解:∵在等腰直角△ABC中,∠B=90°,
∴∠BAC=45°,
∵將△ABC繞點(diǎn) A逆時(shí)針旋轉(zhuǎn)60°后得到的△AB′C′,
∴∠BAB′=60°,∠B′AC′=∠BAC=45°,
∴∠BAC′=∠BAB′+∠B′AC′=60°+45°=105°,
故選A.
【考點(diǎn)精析】利用旋轉(zhuǎn)的性質(zhì)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知①旋轉(zhuǎn)后對(duì)應(yīng)的線段長(zhǎng)短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對(duì)應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把ABC沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)部時(shí),A1+2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是什么?試說明你找出的規(guī)律的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.

(1)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點(diǎn) , 按逆時(shí)針方向旋轉(zhuǎn)度得到;
(2)若BC=8,DE=6,求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC=12厘米,∠B=C,BC=8厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)BPDCQP全等時(shí),v的值為________厘米/秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把兩個(gè)全等的等腰直角三角板(直角邊長(zhǎng)為4)疊放在一起,且三角板EFG的直角頂點(diǎn)G位于三角板ABC的斜邊中點(diǎn)處.現(xiàn)將三角板EFG繞G點(diǎn)按順時(shí)針方向旋轉(zhuǎn)α度(0°<α<90°)(如圖1),四邊形GKCH為兩三角板的重疊部分.

(1)猜想BH與CK有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)連接HK(如圖2),在上述旋轉(zhuǎn)過程中,設(shè)BH=x,△GKH的面積為y,
①求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)△GKH的面積恰好等于△ABC面積的 ,求x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,AB=17,AC=10,BC邊上的高AD=8,則邊BC的長(zhǎng)為( )

A. 21 B. 15 C. 9 D. 9或21

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將△ABC繞O點(diǎn)順時(shí)針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對(duì)應(yīng)A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在一次測(cè)繪活動(dòng)中,某同學(xué)站在點(diǎn)A處觀測(cè)停放于B、C兩處的小船測(cè)得船B在點(diǎn)A北偏東75°方向150米處,船C在點(diǎn)A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC中,AB=AC,CDAB于D

1A=38,求DCB的度數(shù);

2若AB=5,CD=3,求BC的長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案