【題目】如圖,Rt△ABC中,∠B=90°,正方形EFDQ、正方形MNPQ公共頂點(diǎn)記為點(diǎn)Q,其余的各個(gè)頂點(diǎn)都在Rt△ABC的邊上,若AC=5,BC=3,則EP=____________.
【答案】.
【解析】
過P作BC垂線,垂足為G,可證△QDM≌△MBN≌△NGP,△AEF∽△PGC∽△ABC設(shè)EF=3a,CG=3b,則AE=5a,AF=4a,PC=5b,PG=4b,可列二元一次方程組:3a+7b=3,10a+4b=4,求出a、b的值,代入EP=5-5a-5b求出即可.
在Rt△ABC中,∠B=90°,AC=5,BC=3,由勾股定理得:AB=4,
過P作PG⊥BC于G,
∵四邊形EFDQ和四邊形QMNP是正方形,
∴∠CGP=∠QMN=∠QDF=∠B=90°,PN=MN=MQ,
∴∠GPN+∠GNP=90°,∠GNP+∠BNM=90°,
∴∠GPN=∠BNM,
同理∠BNM=∠QMD,
在△GPN、△BNM、△DMQ中,
∠PGN=∠B=∠QDM=90°,∠GPN=∠BNM=∠DMQ,PN=MN=QM,
∴△QDM≌△MBN≌△NGP,
∴PG=BN=DM,GN=BM=DQ,
∵∠PGC=∠B=90°,
∴△CGP∽△CBA,
∴,
∴
同理,,
設(shè)EF=3a,CG=3b,則AE=5a,AF=4a,PC=5b,PG=4b=BN=DM,GN=BM=DQ=EF=3a,
可列一元二次方程組:
解得:
EP=5-5a-5b=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
若一元二次方程有一個(gè)根是,則代數(shù)式的值是
若,則是一元二次方程的一個(gè)根
若,則一元二次方程有不相等的兩個(gè)實(shí)數(shù)根
當(dāng)m取整數(shù)或1時(shí),關(guān)于x的一元二次方程與的解都是整數(shù).
其中正確的有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某保健品廠每天生產(chǎn)A,B兩種品牌的保健品共600瓶,A,B兩種產(chǎn)品每瓶的成本和售價(jià)如下表,設(shè)每天生產(chǎn)A產(chǎn)品x瓶,生產(chǎn)這兩種產(chǎn)品每天共獲利y元.
A | B | |
成本(元)/瓶 | 50 | 35 |
售價(jià)(元)/瓶 | 70 | 50 |
(1)請求出y關(guān)于x的函數(shù)關(guān)系;
(2)該廠每天生產(chǎn)的A,B兩種產(chǎn)品被某經(jīng)銷商全部訂購,廠家對B產(chǎn)品不變,對A產(chǎn)品進(jìn)行讓利,每瓶利潤降低元,廠家如何生產(chǎn)可使每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三個(gè)大小一樣的正六邊形,可按下列方式進(jìn)行拼接:
方式1:如圖1;
方式2:如圖2;
若有四個(gè)邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長是_______.有個(gè)邊長均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長為18,則的最大值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某藥物研究單位試制成功一種新藥,經(jīng)測試,如果患者按規(guī)定劑量服用,那么服藥后每毫升血液中含藥量y(微克)隨時(shí)間x(小時(shí))之間的關(guān)系如圖所示,如果每毫升血液中的含藥量不小于20微克,那么這種藥物才能發(fā)揮作用,請根據(jù)題意回答下列問題:
(1)服藥后,大約多少小時(shí),每毫升血液中含藥量最大,最大值是多少微克;
(2)服藥后,藥物發(fā)揮作用的時(shí)間大約有多少小時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下文并解答問題:
(1)小麗袋子中卡片上分標(biāo)有1,2,3,4;小兵袋子中卡片上分別標(biāo)有1,2,3.分別用a、b表示小冬從小麗、小兵袋子中抽出的卡片上標(biāo)有的數(shù)字,請用樹狀圖法或列表法寫出(a,b)的所有取值情況;
(2)求a>b概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,連結(jié)AD,點(diǎn)E是AD的中點(diǎn),連結(jié)BE并延長交CD于F點(diǎn).
(1)請說明△ABE≌△DFE的理由;
(2)連結(jié)CE,AC,若CB⊥CD,AC=CD,∠D=30°,CD=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種學(xué)生用計(jì)算器,進(jìn)價(jià)為每臺20元,售價(jià)為每臺30元時(shí),每周可賣160臺,如果每臺售價(jià)每上漲2元,每周就會(huì)少賣20臺,但廠家規(guī)定最高每臺售價(jià)不能超過33元,當(dāng)計(jì)算器定價(jià)為多少元時(shí),商場每周的利潤恰好為1680元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下說法合理的是( )
A. 小明做了3次擲圖釘?shù)膶?shí)驗(yàn),發(fā)現(xiàn)2次釘尖朝上,由此他說釘尖朝上的概率是
B. 某彩票的中獎(jiǎng)概率是5%,那么買100張彩票一定有5張中獎(jiǎng)
C. 某射擊運(yùn)動(dòng)員射擊一次只有兩種可能的結(jié)果:中靶與不中靶,所以他擊中靶的概率是
D. 小明做了3次擲均勻硬幣的實(shí)驗(yàn),其中有一次正面朝上,2次正面朝下,他認(rèn)為再擲一次,正面朝上的概率還是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com