【題目】如圖,將矩形沿對角線折疊,點落到點處,于點

1)求證:

2)若,求的值

【答案】1)見解析 (2

【解析】

1)由矩形的性質得到ABCD,∠ABD=∠BDC,求得∠BDC=∠DBF,于是得到結論;

2)根據(jù)矩形的性質得到ADBC,∠A=∠C90°,根據(jù)折疊的性質得到∠A′=∠A90°ADAD,根據(jù)全等三角形的性質得到AFCF,設AFCFx,ADBC2x,根據(jù)勾股定理得到,于是得到結論.

四邊形為矩形,

∵四邊形ABCD是矩形,

ADBC,∠A=∠C90°,

∵將矩形ABCD沿對角線BD折疊,

∴∠A′=∠A90°ADAD,

ADBC,∠A′=∠C90°

∵∠AFD=∠BFC,

∴△DAF≌△BCFAAS),

由勾股定理求得

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)

(1)求A、B兩種型號的電風扇的銷售單價;

(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?

(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形沿折疊后點重合.若原矩形的長寬之比為,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產量隨之降低,若該果園每棵果樹產果y千克,增種果樹x棵,它們之間的函數(shù)關系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

(3)當增種果樹多少棵時,果園的總產量w(千克)最大?最大產量是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用配方法解下列方程:

(1)x2+2x-8=0 (2)x2+12x-15=0

(3)x2-4x=16 (4)x2=x+56

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設他從山腳出發(fā)后所用時間為t(分鐘),所走的路程為s(),st之間的函數(shù)關系如圖所示.下列四種說法:①小明中途休息用了20分鐘;②小明休息前爬山的平均速度為每分鐘70米;③小明在上述過程中所走的路程為6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度.其中正確的是________(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平行四邊形ABCD中,EF分別為邊AB、CD的中點BD是對角線,AGDB,交CB的延長線于G,連接GF,若ADBD.下列結論:①DEBF;四邊形BEDF是菱形;③FGAB;④SBFG=.其中正確的是( 。

A. ①②③④ B. ①② C. ①③ D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,點FAC延長線上,,DE△ABC中位線,如果∠1=30°,DE=2,則四邊形AFED的周長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在10×10的正方形網格中,每個小正方形的邊長為1個單位長度.△ABC的頂點都在正方形網格的格點上,且通過兩次平移(沿網格線方向作上下或左右平移)后得到△A′B′C′,點C的對應點是直線上的格點C′.

(1)畫出△A′B′C′.

(2)△ABC兩次共平移了___個單位長度。

(3)試在直線上畫出點P,使得由點A′、B′、C′、P四點圍成的四邊形的面積為9.

查看答案和解析>>

同步練習冊答案