【題目】如圖,已知直線與拋物線相交于,兩點,拋物線軸于點,交軸正半軸于點,拋物線的頂點為

1)求拋物線的解析式;

2)設點為直線下方的拋物線上一動點,當的面積最大時,求的面積及點的坐標;

3)若點軸上一動點,點在拋物線上且位于其對稱軸右側(cè),當相似時,求點的坐標.

【答案】1y=;(2,;(3

【解析】

1)將點代入中求出點B坐標,將點A,B,C坐標代入中求解即可;

2)如圖所示作輔助線,設點P,點E,表達出EP的長度,將△ABP分割成兩個三角形進行計算,再利用二次函數(shù)的性質(zhì)求最大值即可;

3)通過坐標得出△MAD是等腰直角三角形,從而判斷也是等腰直角三角形,再對進行分類討論.

解:(1)將點代入中得,

∴點,

將點、、代入中得

,解得:,

2)如圖①,過點PEPx軸,交AB于點E,則設點P,點E,

EP=

,開口向下,

∴當時,最大,

此時P

3)在中,令y=0,

解得,

∴點D3,0

又∵M1,-2

AD=4,AM=DM=,

∴△MAD是等腰直角三角形,

相似,則也是等腰直角三角形,

有以下情況:

①當∠MQN=90°,且點N與點D重合時,如下圖所示,滿足要求,此時N3,0

②當∠MQN=90°,點Nx軸上方時,如下圖所示,作NFx軸,ME⊥于x軸,

則△NFQ≌△QEMAAS),

EM=FQ=2,EQ=NF

),則

EQ=t+2-1=t+1

解得:,(舍去),

N

③當∠QMN=90°時, 重合,N3,0),

④當∠QNM=90°時,且點Nx軸上方時,如圖所示作NHx軸,NF⊥直線x=1

則△QHN≌△MFN,

FN=NH

,則,

解得:(舍去)

此時N

⑤當∠QNM=90°時,且點Nx軸下方時,如圖所示作NPx軸,NG⊥直線x=1,

則△QPN≌△NGM

PN=GN

,則, ,

解得(舍去)

此時N

綜上所述,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知菱形ABCD中,∠B=60°,點E在邊BC上,∠BAE=25°,把線段AE繞點A逆時針方向旋轉(zhuǎn),使點E落在邊CD上,那么旋轉(zhuǎn)角的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:如圖1,ABC中,ABa,∠ACBα.如何用直尺和圓規(guī)作出點P,均使得∠APBα?(不需解答)

嘗試:如圖2,ABC中,ACBC,∠ACB90°

1)請用直角三角尺(僅可畫直角或直線)在圖2中畫出一個點P,使得∠APB45°

2)如圖3,若ACBC,以點A為原點,直線ABx軸,過點A垂直于AB的直線為y軸建立平面直角坐標系,直線yb≥0)交x軸于點M,交y軸與點N

①當b7+時,請僅用圓規(guī)在射線MN上作出點P,使得∠APB45°;

②請直接寫出射線MN上使得∠APB45°或∠APB135°時點P的個數(shù)及相應的b的取值范圍;

③應用:如圖4,ABC中,ABa,∠ACBα,請用直尺和圓規(guī)作出點P,使得∠APBα,且AP+BP最大,請簡要說明理由.(不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,的邊垂直于軸、垂足為點,反比例函數(shù)的圖象經(jīng)過的中點、且與相交于點.經(jīng)過、兩點的一次函數(shù)解析式為,若點的坐標為,.且

1)求反比例函數(shù)的解析式;

2)在直線上有一點,的面積等于.求滿足條件的點的坐標;

3)請觀察圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商場銷售某種冰箱,該種冰箱每臺進價為2500元,已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎上每臺降價50元,則平均每天可多售出4臺.設每臺冰箱的實際售價比原銷售價降低了元.

1)填表:

每天的銷售量/

每臺銷售利潤/

降價前

8

400

降價后

2)商場為使這種冰箱平均每天的銷售利潤達到最大時,則每臺冰箱的實際售價應定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)小明同學在學習了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個銳角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”小明作圖的依據(jù)是   

2)尺規(guī)作圖作∠AOB的平分線方法如下:以O為圓心,任意長為半徑畫弧OA、OBC、D,再分別以點C、D為圓心,以大于CD長為半徑畫弧,兩弧交于點P,則作射線OP即為所求.由作法得△OCP≌△ODP的根據(jù)是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形中,,,點是對角線所在直線上一點,且,直線交直線于點,則____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,且與x軸交于點C,與y軸交于點D,A點的橫坐標與B點的縱坐標都是3.

(1)求一次函數(shù)的表達式;

(2)求△AOB的面積;

(3)寫出不等式kx+b>﹣的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.

(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;

(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;

(3)在(2)的條件下,若DE=4,DF=3,求AF的長.

查看答案和解析>>

同步練習冊答案