下列函數(shù)中,y隨x增大而增大的函數(shù)的個(gè)數(shù)是
①y=-x;②y=3x-1;③數(shù)學(xué)公式;④數(shù)學(xué)公式


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
B
分析:根據(jù)一次函數(shù)的性質(zhì):k>0,y隨x的增大而增大,正比例函數(shù)的性質(zhì):k>0,y隨x的增大而增大可得答案.
解答:y隨x增大而增大的函數(shù)有②④,
故選:B.
點(diǎn)評:此題主要考查了一次函數(shù)的性質(zhì),關(guān)鍵是熟練掌握性質(zhì),一次函數(shù)的性質(zhì):k>0,y隨x的增大而增大,函數(shù)從左到右上升;k<0,y隨x的增大而減小,函數(shù)從左到右下降.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)y1=-x(x≤0),y2=-
4
x
(x<0)的圖象如圖所示,則下列說法中錯(cuò)誤的是(  )
A、兩函數(shù)的圖象的交點(diǎn)A的坐標(biāo)為(-2,2)
B、當(dāng)x>-2時(shí),有y1>y2
C、當(dāng)x=-1時(shí),BC=3
D、當(dāng)x逐漸增大時(shí),y1隨x的增大而增小,y2隨x的增大而減大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當(dāng)a<x1<x2<b時(shí),總是有y1<y2(yn是與xn對應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
證明:在正實(shí)數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因?yàn)閤1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時(shí),y1<y2
所以函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實(shí)數(shù));②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有

(2)對于函數(shù)y=x2-2x+1,當(dāng)自變量x
>1
>1
時(shí),函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時(shí)是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當(dāng)a<x1<x2<b時(shí),總是有y1<y2(yn是與xn對應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
證明:在正實(shí)數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因?yàn)閤1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時(shí),y1<y2
所以函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實(shí)數(shù));②數(shù)學(xué)公式(x>0);③數(shù)學(xué)公式(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對于函數(shù)y=x2-2x+1,當(dāng)自變量x______時(shí),函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時(shí)是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先閱讀下面材料,再回答問題.
一般地,如果函數(shù)y的自變量x在a<x<b范圍內(nèi),對于任意x1,x2,當(dāng)a<x1<x2<b時(shí),總是有y1<y2(yn是與xn對應(yīng)的函數(shù)值),那么就說函數(shù)y在a<x<b范圍內(nèi)是增函數(shù).
例如:函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
證明:在正實(shí)數(shù)范圍內(nèi)任取x1,x2,若x1<x2,
則y1-y2=x12-x22=( x1-x2)( x1+x2
因?yàn)閤1>0,x2>0,x1<x2
所以x1+x2>0,x1-x2<0,( x1-x2)( x1+x2)<0
即y1-y2<0,亦即y1<y2,也就是當(dāng)x1<x2時(shí),y1<y2
所以函數(shù)y=x2在正實(shí)數(shù)范圍內(nèi)是增函數(shù).
問題:
(1)下列函數(shù)中.①y=-2x(x為全體實(shí)數(shù));②y=-
2
x
(x>0);③y=
1
x
(x>0);在給定自變量x的取值范圍內(nèi),是增函數(shù)的有______.
(2)對于函數(shù)y=x2-2x+1,當(dāng)自變量x______時(shí),函數(shù)值y隨x的增大而增大.
(3)說明函數(shù)y=-x2+4x,當(dāng)x<2時(shí)是增函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

函數(shù)≤0),<0)的圖象如圖所示,則下列說法中錯(cuò)誤的是(      )

A.兩函數(shù)的圖象的交點(diǎn)A的坐標(biāo)為(-2,2)       B.當(dāng)>-2時(shí),有              

C.當(dāng)=-1時(shí),BC=3                 D.當(dāng)逐漸增大時(shí),的增大而增小,的增大而減大。

     

查看答案和解析>>

同步練習(xí)冊答案