【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、、第10層,每層高度為3 m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α

(1) 用含α的式子表示h(不必指出α的取值范圍);

(2) 當(dāng)α30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光 ?

【答案】(1) h="30-30tana." (2) 第五層, 1小時(shí)后

【解析】(1)過(guò)點(diǎn)EEF⊥ABF,由題意,四邊形ACEF為矩形.

∴EF=AC=30,AF="CE=h," ∠BEF=α,

∴BF=3×10-h=30-h.

又 在RtBEF中,tanBEF=

tanα=,即30 - h="30tanα."

∴h="30-30tan."

(2)當(dāng)α30°時(shí),h=30-30tan30°=30-30×≈12.7,

∵12.7÷3≈4.2, ∴ B點(diǎn)的影子落在乙樓的第五層 .

當(dāng)B點(diǎn)的影子落在C處時(shí),甲樓的影子剛好不影響乙樓采光.

此時(shí),由AB=AC=30,知△ABC是等腰直角三角形,

∴∠ACB45°,

= 1(小時(shí)).

故經(jīng)過(guò)1小時(shí)后,甲樓的影子剛好不影響乙樓采光.

1)利用直角三角形邊角關(guān)系得出hα的關(guān)系;

2)把α代入上題的關(guān)系中,解出h的高度,然后算出光線落到C點(diǎn)時(shí)的α的角度,從而得出需要時(shí)間。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠ABC的角平分線與∠ACB的外角∠ACD的平分線交于A1
(1)當(dāng)∠A為70°時(shí), ∵∠ACD﹣∠ABD=∠
∴∠ACD﹣∠ABD=°
∵BA1、CA1是∠ABC的角平分線與∠ACB的外角∠ACD的平分線
∴∠A1CD﹣∠A1BD= (∠ACD﹣∠ABD)
∴∠A1=°;
(2)∠A1BC的角平分線與∠A1CD的角平分線交于A2 , ∠A2BC與A2CD的平分線交于A3 , 如此繼續(xù)下去可得A4、…、An , 請(qǐng)寫(xiě)出∠A與∠An的數(shù)量關(guān)系
(3)如圖2,四邊形ABCD中,∠F為∠ABC的角平分線及外角∠DCE的平分線所在的直線構(gòu)成的角,若∠A+∠D=230度,則∠F=
(4)如圖3,若E為BA延長(zhǎng)線上一動(dòng)點(diǎn),連EC,∠AEC與∠ACE的角平分線交于Q,當(dāng)E滑動(dòng)時(shí)有下面兩個(gè)結(jié)論:①∠Q+∠A1的值為定值;②∠Q﹣∠A1的值為定值.其中有且只有一個(gè)是正確的,請(qǐng)寫(xiě)出正確的結(jié)論,并求出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的半徑為5,若PO=4,則點(diǎn)P與⊙O的位置關(guān)系是 (  )

A. 點(diǎn)P在⊙OB. 點(diǎn)P在⊙O內(nèi)C. 點(diǎn)P在⊙OD. 無(wú)法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC=60°,∠ACB=45°,AD、CF都是高,相交于點(diǎn)P,角平分線BE分別交AD、CF于Q、S,則圖中的等腰三角形個(gè)數(shù)是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACBC,過(guò)點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),且AD=4,過(guò)點(diǎn)DDEBC,交直線MNE,垂足為F,連接CDBE

(1)求CE的長(zhǎng);

(2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D、E分別是BC邊、AB邊上的點(diǎn),且BE=CD,連接AD、CE交于點(diǎn)F,過(guò)A作AH⊥CE于H,

(1)求證:∠BCE=∠CAD;
(2)直接寫(xiě)出∠CFD的度數(shù);并寫(xiě)出線段AF與線段HF的數(shù)量關(guān)系.(無(wú)需解答過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對(duì)移動(dòng)電話采取不同的收費(fèi)方式,其中,所使用的便民卡如意卡在某市范圍內(nèi)每月(30天)的通話時(shí)間x(min)與通話費(fèi)y(元)的關(guān)系如圖所示:

(1)分別求出通話費(fèi)y1,y2與通話時(shí)間x之間的函數(shù)關(guān)系式;

(2)請(qǐng)幫用戶計(jì)算,在一個(gè)月內(nèi)使用哪一種卡便宜.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將點(diǎn)A(-1,2)沿x軸向右平移3個(gè)單位長(zhǎng)度,再沿y軸向下平移4個(gè)單位長(zhǎng)度后得到點(diǎn)A′的坐標(biāo)為( 。
A.(-4,-2 )
B.(2,-2 )
C.(-4,6 )
D.(2,6 )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1光年是光在一年內(nèi)通過(guò)的距離如果光的速度為每秒3×105千米,一年約為3.2×107,那么1光年約為多少千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案