【題目】如圖,在△ABC中,∠C=90°,點O為BC上一點,以點O為圓心、OB的長為半徑作圓,交BC于點F,交AB于點D,過點D作⊙O的切線,交AC于點E.
(1)求證:AE=DE;
(2)若,CF=2,BF=10,求AD的長.
【答案】(1)見解析;(2)AD=7.
【解析】
(1)連接OD,利用切線的性質(zhì),得到∠ODE=90°,逐步得到∠A=∠ADE,等角對等邊即可證明.
(2)在Rt△ABC中,由題意可得BC=CF+FB=12,AC=9,AB=15;連接DF,由題意可得△FBD∽△ABC,根據(jù)對應(yīng)邊成比例即可求解.
(1)證明:如圖,連接OD.
∵DE是⊙O的切線,
∴∠ODE=90°,
∴∠ADE+∠ODB=90°.
∵OD=0B,
∴∠B=∠ODB,
∴∠ADE+∠B=90°
又∵∠A+∠B=180°-∠C=90°,
∴∠A=∠ADE,
∴AE=DE.
(2)在Rt△ABC中:BC=CF+FB=12,
∴AC=9,
∴AB==15.
如圖,連接DF.
∵BF是⊙O的直徑,
∴∠FDB=90°=∠ACB.
又∵∠B=∠B,
∴△FBD∽△ABC,
∴
即
∴BD=8,
∴AD=AB-BD=7.
科目:初中數(shù)學 來源: 題型:
【題目】已知,,是等圓,內(nèi)接于,點,分別在,上.如圖,
①以為圓心,長為半徑作弧交于點,連接;
②以為圓心,長為半徑作弧交于點,連接;
下面有四個結(jié)論:
①
②
③
④
所有正確結(jié)論的序號是( ).
A.①②③④B.①②③C.②④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
背景閱讀 早在三千多年前,我國周朝數(shù)學家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被記載于我國古代著名數(shù)學著作《周髀算經(jīng)》中,為了方便,在本題中,我們把三邊的比為3:4:5的三角形稱為(3,4,5)型三角形,例如:三邊長分別為9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形紙片按下面的操作方法可以折出這種類型的三角形.
實踐操作 如圖1,在矩形紙片ABCD中,AD=8cm,AB=12cm.
第一步:如圖2,將圖1中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平.
第二步:如圖3,將圖2中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF.
第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點N,然后展平.
問題解決
(1)請在圖2中證明四邊形AEFD是正方形.
(2)請在圖4中判斷NF與ND′的數(shù)量關(guān)系,并加以證明;
(3)請在圖4中證明△AEN(3,4,5)型三角形;
探索發(fā)現(xiàn)
(4)在不添加字母的情況下,圖4中還有哪些三角形是(3,4,5)型三角形?請找出并直接寫出它們的名稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種商品,該商品的進價為每件10元,物價部門限定,每件該商品的銷售利潤不得超過,銷售過程中發(fā)現(xiàn)月銷售量 (件)與銷售單價 (元)之間的關(guān)系滿足:當時,月銷售量為640件;當時,銷售單價每增加1元,月銷售量就減少20件.
(1)請直接寫出與之間的函數(shù)關(guān)系式;
(2)設(shè)該商品的月利潤為(元),求與之間的函數(shù)關(guān)系式,并指出當該商品的銷售單價定為多少元時,月利潤最大,最大月利潤是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展黃梅戲演唱比賽,組委會將本次比賽的成績(單位:分)進行整理,并繪制成如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整).
請你根據(jù)圖表提供的信息,解答下列問題:
(1)求出a,b的值并補全頻數(shù)分布直方圖.
(2)將此次比賽成績分為三組:A.50≤x<60;B.60≤x<80;C.80≤x≤100.若按照這樣的分組方式繪制扇形統(tǒng)計圖,則其中C組所在扇形的圓心角的度數(shù)是多少?
(3)學校準備從不低于90分的參賽選手中任選2人參加市級黃梅戲演唱比賽,求都取得了95分的小欣和小怡同時被選上的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(﹣1,0),B(3,0),交y軸的負半軸于C,頂點為D.下列結(jié)論:①2a+b=0;②2c<3b;③當m≠1時,a+b<am2+bm;④當△ABD是等腰直角三角形時,則a= ;⑤當△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,弓形中,,.若點在優(yōu)弧上由點移動到點,記的內(nèi)心為,點隨點的移動所經(jīng)過的路徑長為( ).
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC、BD是對角線,將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG.則下列結(jié)論:①四邊形AEGF是菱形;②△HED的面積是1﹣;③∠AFG=135°;④BC+FG=.其中正確的結(jié)論是_____.(填入正確的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地同時出發(fā)相向而行.并以各自的速度勻速行駛,甲車途徑C地時休息一小時,然后按原速度繼續(xù)前進到達B地;乙車從B地直接到達A地,如圖是甲、乙兩車和B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)圖象.
(1)直接寫出a,m,n的值;
(2)求出甲車與B地的距離y(千米)與甲車出發(fā)時間x(小時)的函數(shù)關(guān)系式(寫出自變量x的取值范圍);
(3)當兩車相距120千米時,乙車行駛了多長時間?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com