【題目】如圖,點(diǎn)P是直線y=+2與雙曲線y=在第一象限內(nèi)的一個(gè)交點(diǎn),直線y=+2與x軸、y軸的交點(diǎn)分別為A、C,過P作PB⊥x軸,AB+PB=9.
(1)求m的值;
(2)在雙曲線上是否存在一點(diǎn)G,使得△ABG的面積等于△PBC的面積?若存在,求出點(diǎn)G的坐標(biāo);若不存在,說明理由.
【答案】(1)6;(2)存在一點(diǎn)G,使得△ABG的面積等于△PBC的面積,G點(diǎn)坐標(biāo)為(6,1)或(﹣6,﹣1).
【解析】
(1)直線與x軸、y軸的交點(diǎn)分別為A、C,確定出A、C的坐標(biāo),根據(jù)求得PB的長,進(jìn)而求得OB的長,進(jìn)而確定出P坐標(biāo),代入反比例解析式即可求出k的值;
(2)根據(jù)先求出,再設(shè)G(a,),列出關(guān)于a的方程,求出方程的解確定出G坐標(biāo).
解:(1)對于直線,
令,得到,即,;令,得到,即,,
軸,軸,
,
,
,
設(shè),則有,
代入比例式得:,即,
解得:,
,,即,
,
將代入反比例解析式得:;
(2);
假設(shè)存在一點(diǎn)G,使得的面積等于的面積,
設(shè),則有,即,
解得:或,
存在一點(diǎn)G,使得的面積等于的面積,G點(diǎn)坐標(biāo)為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=時(shí),設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(diǎn)(E在F的左邊),觀察M,N,E,F四點(diǎn)坐標(biāo),請寫出一個(gè)你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為表彰在“了不起我的國”演講比賽中獲獎(jiǎng)的選手,決定購買甲、乙兩種圖書作為獎(jiǎng)品.已知購買30本甲種圖書,50本乙種圖書共需1350元;購買50本甲種圖書,30本乙種圖書共需1450元.
(1)求甲、乙兩種圖書的單價(jià)分別是多少元?
(2)學(xué)校要求購買甲、乙兩種圖書共40本,且甲種圖書的數(shù)量不少于乙種圖書數(shù)量的,請?jiān)O(shè)計(jì)最省錢的購書方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民選擇家用凈水器,光明商場計(jì)劃從生產(chǎn)廠家購進(jìn)甲、乙兩種型號的家用凈水器,甲型號凈水器進(jìn)價(jià)為160元/臺(tái),乙型號凈水器進(jìn)價(jià)為280元/臺(tái),經(jīng)過協(xié)商溝通,生產(chǎn)廠家拿出了兩種優(yōu)惠方案:第一種優(yōu)惠方案:甲、乙兩種型號凈水器均按進(jìn)價(jià)的8折收費(fèi);第二種優(yōu)惠方案:甲型號凈水器按原價(jià)收費(fèi),乙型號凈水器的進(jìn)貨量超過10臺(tái)后超過的部分按進(jìn)價(jià)的6折收費(fèi).
光明商場只能選擇一種優(yōu)惠方案,已知光明商場計(jì)劃購進(jìn)甲型號凈水器數(shù)量是乙型號凈水器數(shù)量的1.5倍,設(shè)光明商場購進(jìn)乙型號凈水器臺(tái),選擇第一種優(yōu)惠方案所需費(fèi)用為片元,選擇第二種優(yōu)惠方案所需費(fèi)用為元.
(1)分別求出、與的關(guān)系式:
(2)光明商場計(jì)劃購進(jìn)乙型號凈水器40臺(tái),請你為光明商場選擇合適的優(yōu)惠方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,點(diǎn)A是半圓上的三等分點(diǎn),B是弧AD的中點(diǎn),P點(diǎn)為直線CD上的一個(gè)動(dòng)點(diǎn),當(dāng)CD=6時(shí),AP+BP的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).
(Ⅰ)如圖①,過點(diǎn)C作⊙O的切線,與AB的延長線相交于點(diǎn)P,若∠CAB=32°,求∠P的大。
(Ⅱ)如圖②,D為優(yōu)弧ADC上一點(diǎn),且DO的延長線經(jīng)過AC的中點(diǎn)E,連接DC與AB相交于點(diǎn)P,若∠CAB=16°,求∠DPA的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校小偉同學(xué)酷愛健身,一天去爬山鍛煉,在出發(fā)點(diǎn)C處測得山頂部A的仰角為30度,在爬山過程中,每一段平路(CD、EF、GH)與水平線平行,每一段上坡路(DE、FG、HA)與水平線的夾角都是45度,在山的另一邊有一點(diǎn)B(B、C、D同一水平線上),斜坡AB的坡度為2:1,且AB長為900,其中小偉走平路的速度為65.7米/分,走上坡路的速度為42.3米/分.則小偉從C出發(fā)到坡頂A的時(shí)間為( 。▓D中所有點(diǎn)在同一平面內(nèi)≈1.41,≈1.73)
A.60分鐘B.70分鐘C.80分鐘D.90分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,直線AB與CD的延長線相交于點(diǎn)A,AB2=ADAC,OE∥BD交直線AB于點(diǎn)E,OE與BC相交于點(diǎn)F.
(1)求證:直線AE是⊙O的切線;
(2)若⊙O的半徑為3,cosA=,求OF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com