【題目】如圖,等腰中,,點(diǎn)A、B分別在坐標(biāo)軸上.
(1)如圖1,若,,求C點(diǎn)的坐標(biāo);
(2)如圖2,CD垂直x軸于D點(diǎn),判斷CD、OA、OD的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,若點(diǎn)A的坐標(biāo)為,點(diǎn)B在y軸的正半軸上運(yùn)動(dòng)時(shí),分別以OB,AB為邊在第一,第二象限作等腰,等腰,連接EF交y軸于P點(diǎn),當(dāng)點(diǎn)B在y軸上移動(dòng)時(shí),PB的長(zhǎng)度是否變化?如果不變求出PB值,如果變化求PB的取值范圍.
【答案】(1)C點(diǎn)坐標(biāo)(1,-2);(2)AO=BO+CD,證明見(jiàn)解析;(3)PB不發(fā)生變化,PB=2
【解析】
(1)作CD⊥BO,易證,根據(jù)全等三角形對(duì)應(yīng)邊相等的性質(zhì)即可解題.
(2)作CE⊥y軸,易證,根據(jù)全等三角形對(duì)應(yīng)邊相等的性質(zhì)即可解題.
(3)作EG⊥y軸,易證和,可得BG=AO和PB=PG,即可求得PB=AO,即可解題.
(1)
如圖,作CD⊥BO,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°
∴∠CBD=∠BAO
在和中,
∴
∴BD=AO=3,CD=BO=1
∴C點(diǎn)坐標(biāo)(1,-2)
(2)
如圖:作CE⊥y軸,
∵∠BAO+∠OBA=90°,∠OBA+∠OBC=90°
∴∠BAO=∠OBC
在和中,
∴
∴CE=OB,AO=BE
∵CD=OE, BE=BO+OE
∴BE=BO+CD
即AO=BO+CD
(3)
如圖,作EG⊥y軸,
∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°
∴∠BAO=∠EBG
在和中,
∴
∴BG=AO,EG=OB
∵OB=BF
∴BF=EG
在和中,
∴
∴PB=PG
∴PB=BG=AO=2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圖1至圖3中,點(diǎn)B是線段AC的中點(diǎn),點(diǎn)D是CE的中點(diǎn),△BCF和△CDG都是等邊三角形,點(diǎn)M為AE的中點(diǎn),連接FG.
(1)如圖1,若點(diǎn)E在AC的延長(zhǎng)線上,點(diǎn)M與點(diǎn)C重合,則△FMG 等邊三角形(填“是”或“不是”)
(2)將圖1中的CE縮短,得到圖2.求證:△FMG為等邊三角形;
(3)將圖2中的CE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)一個(gè)銳角,得到圖3.求證:△FMG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在解決數(shù)學(xué)問(wèn)題時(shí),我們一般先仔細(xì)讀題干,找出有用信息作為已知條件,然后用這些信息解決問(wèn)題,但是有的題目信息比較明顯,我們把這樣的信息稱為顯性條件,而有的信息不太明顯需要結(jié)合圖形,特殊式子成立的條件,實(shí)際問(wèn)題等發(fā)現(xiàn)隱含信息作為條件,這樣的條件稱為隱含條件,所以我們?cè)谧鲱}時(shí)更注意發(fā)現(xiàn)題目中的隱含條件
(閱讀理解)
讀下面的解題過(guò)程,體會(huì)加何發(fā)現(xiàn)隱含條件,并回答.
化簡(jiǎn):.解:隱含條件1-3x≥0,解得:x,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x
(啟發(fā)應(yīng)用)
已知△ABC三條邊的長(zhǎng)度分別是,記△ABC的周長(zhǎng)為C△ABC
(1)當(dāng)x=2時(shí),△ABC的最長(zhǎng)邊的長(zhǎng)度是______(請(qǐng)直接寫出答案).
(2)請(qǐng)求出C△ABC(用含x的代數(shù)式表示,結(jié)果要求化簡(jiǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(情境)某課外興趣小組在一次折紙活動(dòng)課中.折疊一張帶有條格的長(zhǎng)方形的紙片ABCD(如圖1),將點(diǎn)B分別與點(diǎn)A,A1,A2,…,D重合,然后用筆分別描出每條折痕與對(duì)應(yīng)條格線所在的直線的交點(diǎn),用平滑的曲線順次連結(jié)各交點(diǎn),得到一條曲線.
圖1 圖2 圖3
(探索)(1)如圖2,在平面直角坐標(biāo)系xOy中,將矩形紙片ABCD的頂點(diǎn)B與原點(diǎn)O重合,BC邊放在x軸的正半軸上,AB邊放在y軸的正半軸上,AB=m,AD=n,(m≤n).將紙片折疊,使點(diǎn)B落在邊AD上的點(diǎn)E處,過(guò)點(diǎn)E作EQ⊥BC于點(diǎn)Q,折痕MN所在直線與直線EQ相交于點(diǎn)P,連結(jié)OP.求證:四邊形OMEP是菱形;
(歸納)(2)設(shè)點(diǎn)P坐標(biāo)是(x,y),求y與x的函數(shù)關(guān)系式(用含m的代數(shù)式表示).
(運(yùn)用)(3)將矩形紙片ABCD如圖3放置,AB=8,AD=12,將紙片折疊,當(dāng)點(diǎn)B與點(diǎn)D重合時(shí),折痕與DC的延長(zhǎng)線交于點(diǎn)F.試問(wèn)在這條折疊曲線上是否存在點(diǎn)K,使得△KCF的面積是△KOC面積的?若存在,寫出點(diǎn)K的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著中國(guó)傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場(chǎng)決定開(kāi)展“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽(yáng)光敬老院需購(gòu)買甲品牌粽子80盒,乙品牌粽子100盒,問(wèn)打折后購(gòu)買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過(guò)P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若,則稱與是關(guān)于的平衡數(shù).
與 是關(guān)于的平衡數(shù),與 是關(guān)于的平衡數(shù). (用含的代數(shù)式表示)
若,判斷與是否是關(guān)于的平衡數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB⊥BC,DC⊥BC,AE 平分∠BAD,DE 平分∠ADC,以下結(jié)論:①∠AED=90°;②點(diǎn) E 是 BC 的中點(diǎn);③DE=BE;④AD=AB+CD;其中正確的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(知識(shí)生成)
我們已經(jīng)知道,通過(guò)不同的方法表示同一圖形的面積,可以探求相應(yīng)的等式.
2002年8月在北京召開(kāi)了國(guó)際數(shù)學(xué)大會(huì),大會(huì)會(huì)標(biāo)如圖1所示,它是由四個(gè)形狀大小完全相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形,直角三角形的兩條直角邊長(zhǎng)分別為a、b ( a<b ),斜邊長(zhǎng)為c.
(1)圖中陰影部分的面積用兩種方法可分別表示為 、 ;
(2)你能得出的a,b,c之間的數(shù)量關(guān)系是 (等號(hào)兩邊需化為最簡(jiǎn)形式);
(3)一直角三角形的兩條直角邊長(zhǎng)為6和8,則其斜邊長(zhǎng)為 .
(知識(shí)遷移)
通過(guò)不同的方法表示同一幾何體的體積,也可以探求相應(yīng)的等式.如圖2是邊長(zhǎng)為a+b的正方體,被如圖所示的分割線分成8塊.
(4)用不同方法計(jì)算這個(gè)正方體體積,就可以得到一個(gè)等式,這個(gè)等式可以為 .(等號(hào)兩邊需化為最簡(jiǎn)形式)
(5)已知a+b=3,ab=1,利用上面的規(guī)律求a3+b3的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com