作业宝如圖,已知⊙O點(diǎn)的半徑為5cm,圓心O到直線m的距離為3cm,點(diǎn)P為⊙O上一動(dòng)點(diǎn).則點(diǎn)P到直線m的距離為2cm的點(diǎn)的個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
C
分析:首先根據(jù)垂徑定理求得點(diǎn)C到弧AB的中點(diǎn)的距離,然后確定到直線m的距離為2的點(diǎn)的個(gè)數(shù).
解答:解:延長(zhǎng)OC至點(diǎn)D,連接OA,
∵半徑為3,OC=3,
∴CD=2,
∵在點(diǎn)A的左側(cè)和點(diǎn)B的右側(cè)各有一個(gè)點(diǎn)到AB的距離為2,
∴到直線m的距離為2cm的點(diǎn)的個(gè)數(shù)為3,
故選C.
點(diǎn)評(píng):本題考查了直線與圓的位置關(guān)系,求得線段CD的長(zhǎng)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形OABC的兩邊OA,OC分別在x軸,y軸的正半軸上,且點(diǎn)B(4,3),反比例函數(shù)精英家教網(wǎng)y=
kx
圖象與BC交于點(diǎn)D,與AB交于點(diǎn)E,其中D(1,3).
(1)求反比例函數(shù)的解析式及E點(diǎn)的坐標(biāo);
(2)若矩形OABC對(duì)角線的交點(diǎn)為F,請(qǐng)判斷點(diǎn)F是否在此反比例函數(shù)的圖象上,并說(shuō)明理由.
(3)若AD與BO的交點(diǎn)為Q,請(qǐng)判斷點(diǎn)Q是否在此反比例函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•揭西縣模擬)如圖,已知菱形ABCD的邊長(zhǎng)為2
3
,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B在坐標(biāo)原點(diǎn),點(diǎn)D的坐標(biāo)為(-
3
,3),拋物線y=ax2+b.(a≠0)經(jīng)過(guò)AB、CD兩邊的中點(diǎn).
(1)求這條拋物線的函數(shù)解析式;
(2)將菱形ABCD以每秒1個(gè)單位長(zhǎng)度的速度沿x軸正方向勻速平移,過(guò)點(diǎn)B作BE⊥CD于點(diǎn)E,交拋物線于點(diǎn)F,連接DF、AF,設(shè)菱形ABCD平移的時(shí)間為t秒(0<t<3),是否存在這樣的t,使△ADF與△DEF相似?若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知矩形OABC的兩邊OA,OC分別在x軸,y軸的正半軸上,且點(diǎn)B(4,3),反比例函數(shù)y=
k
x
圖象與BC交于點(diǎn)D,與AB交于點(diǎn)E,其中D(1,3).
(1)求反比例函數(shù)的解析式及E點(diǎn)的坐標(biāo);
(2)求直線DE的解析式;
(3)若矩形OABC對(duì)角線的交點(diǎn)為F (2,
3
2
)
,作FG⊥x軸交直線DE于點(diǎn)G.
①請(qǐng)判斷點(diǎn)F是否在此反比例函數(shù)y=
k
x
的圖象上,并說(shuō)明理由;
②求FG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為4,將正方形置于平面直角坐標(biāo)系xOy中,使AB在x軸的負(fù)半軸上,A點(diǎn)的坐標(biāo)是(-1,0).
(1)若經(jīng)過(guò)點(diǎn)C的直線y=-
125
x-8
與x軸交于點(diǎn)E,求四邊形AECD的面積;
(2)是否存在經(jīng)過(guò)點(diǎn)E的直線l將正方ABCD分成面積相等的兩部分?若存在,求出直線l的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為4,將正方形ABCD置于平面直角坐標(biāo)系中,使A點(diǎn)與坐標(biāo)系的原點(diǎn)重合,AB與x軸正半軸成30°角,求點(diǎn)B、C、D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案