【題目】如圖,在△ABC中,∠ABC=2∠C,AD平分∠BAC,求證:AB+BD=AC.
科目:初中數(shù)學 來源: 題型:
【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發(fā)現(xiàn)了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當tan∠PAB=1,c=4 時,a= , b=;
如圖2,當∠PAB=30°,c=2時,a= , b=;
(2)【歸納證明】請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
(3)【拓展證明】如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3 ,AB=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒 cm的速度向點B勻速運動,設運動時間為t秒(0≤t≤5),連接MN.
(1)若BM=BN,求t的值;
(2)若△MBN與△ABC相似,求t的值;
(3)當t為何值時,四邊形ACNM的面積最。坎⑶蟪鲎钚≈担
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解學生的體能情況,隨機選取了1000名學生進行調查,并記錄了他們對長跑、短跑、跳繩、跳遠四個項目的喜歡情況,整理成以下統(tǒng)計表,其中“√”表示喜歡,“×”表示不喜歡.
項目 | 長跑 | 短跑 | 跳繩 | 跳遠 |
200 | √ | × | √ | √ |
300 | × | √ | × | √ |
150 | √ | √ | √ | × |
200 | √ | × | √ | × |
150 | √ | × | × | × |
(1)估計學生同時喜歡短跑和跳繩的概率;
(2)估計學生在長跑、短跑、跳繩、跳遠中同時喜歡三個項目的概率;
(3)如果學生喜歡長跑、則該同學同時喜歡短跑、跳繩、跳遠中哪項的可能性大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校將為初一學生開設ABCDEF共6門選修課,現(xiàn)選取若干學生進行了“我最喜歡的一門選修課”調查,將調查結果繪制成如圖統(tǒng)計圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 40 | 60 | 100 |
根據(jù)圖表提供的信息,下列結論錯誤的是( 。
A.這次被調查的學生人數(shù)為400人
B.扇形統(tǒng)計圖中E部分扇形的圓心角為72°
C.被調查的學生中喜歡選修課E,F(xiàn)的人數(shù)分別為80,70
D.喜歡選修課C的人數(shù)最少
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD,CE為△ABC的角平分線且交于O點,∠DAC=30°,∠ECA=35°,則∠ABO等于( )
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D,AE⊥BC,垂足為E,且CF∥AD.
(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE= 度;
(2)若圖1中的∠B=x,∠ACB=y,則∠CFE= ;(用含x、y的代數(shù)式表示)
(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)(﹣2,1),先將△ABC沿一確定方向平移得到△A1B1C1 , 點B的對應點B1的坐標是(1,2),再將△A1B1C1繞原點O順時針旋轉90°得到△A2B2C2 , 點A1的對應點為點A2 .
(1)畫出△A1B1C1;
(2)畫出△A2B2C2;
(3)求出在這兩次變換過程中,點A經(jīng)過點A1到達A2的路徑總長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com