【題目】閱讀題.
材料一:若一個(gè)整數(shù)m能表示成a2-b2(a,b為整數(shù))的形式,則稱(chēng)這個(gè)數(shù)為“完美數(shù)”.例如,3=22-12,9=32-02,12=42-22,則3,9,12都是“完美數(shù)”;再如,M=x2+2xy=(x+y)2-y2,(x,y是整數(shù)),所以M也是”完美數(shù)”.
材料二:任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p、q是正整數(shù),且p≤q).如果p×q在n的所有這種分解中兩因數(shù)之差的絕對(duì)值最小,我們就稱(chēng)p×q是n的最佳分解,并且規(guī)定F(n)=.例如18=1×18=2×9=3×6,這三種分解中3和6的差的絕對(duì)值最小,所以就有F(18)=.請(qǐng)解答下列問(wèn)題:
(1)8______(填寫(xiě)“是”或“不是”)一個(gè)完美數(shù),F(8)= ______.
(2)如果m和n都是”完美數(shù)”,試說(shuō)明mn也是完美數(shù)”.
(3)若一個(gè)兩位數(shù)n的十位數(shù)和個(gè)位數(shù)分別為x,y(1≤x≤9),n為“完美數(shù)”且x+y能夠被8整除,求F(n)的最大值.
【答案】(1)是,;(2)說(shuō)明見(jiàn)解析; (3).
【解析】
(1)利用“完美數(shù)”的定義可得;
(2)根據(jù)完全平方公式,可證明mn是“完美數(shù)”;
(3)兩個(gè)一位數(shù)相加能被8整除,說(shuō)明x+y=8或16, 這樣可得正整數(shù)n為79,97,88,71,17,26,62,35,53,44共10種, 根據(jù)n為“完美數(shù)”可把n=26和n=62舍去,再根據(jù)n的最佳分解確定出F(n)的最大值.
(1) )∵8=32-12
∴8是完美數(shù),
F(8)==
故答案為:是, .
(2)設(shè)m=, n=,其中a,b,c,d均為整數(shù),
則mn= ()()
=
=
∵a,b,c,d均為整數(shù)
∴ac+bd與ad+bc也是整數(shù),即mn是“完美數(shù)”.
(3) ∵兩個(gè)一位數(shù)相加能被8整除,
∴ x+y=8或16,
∴n=79或97或88或71或17或26或62或35或53或44,
∵n為“完美數(shù)”,
∴n=79或97或88或71或17或35或53或44,
其中F(79)=,F(97)= ,F(88)=, F(71)=, F(17)=, F(35)=, F(53)=, F(44)=,
∴F(n)的最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的5個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這5個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹(shù)狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AC=BC,∠ACB=120°,點(diǎn)D在AB邊上運(yùn)動(dòng)(D不與A、B重合),連結(jié)CD.作∠CDE=30°,DE交AC于點(diǎn)E.
(1)當(dāng)DE∥BC時(shí),△ACD的形狀按角分類(lèi)是直角三角形;
(2)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ECD的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出∠AED的度數(shù);若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二維碼已經(jīng)給我們的生活帶來(lái)了很大方便,它是由大小相同的黑白兩色的小正方形(如圖中C型黑白一樣)按某種規(guī)律組成的一個(gè)大正方形,F(xiàn)有25×25格式的正方形如圖,角上是三個(gè)7×7的A型大黑白相間正方形,中間右下有一個(gè)5×5的B型黑白相間正方形((A,B型均由C型黑白兩色小正方形組成),除這4個(gè)正方形外,其他的C型小正方形黑色塊數(shù)正好是白色塊數(shù)的3倍多53塊,則該25×25格式的二維碼中除去A、B型后,有__塊C型白色小正方形,整個(gè)二維碼中共有__塊C型白色小正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)y= ,下列說(shuō)法錯(cuò)誤的是( )
A.這個(gè)函數(shù)的圖象位于第一、第三象限
B.這個(gè)函數(shù)的圖象既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形
C.當(dāng)x>0時(shí),y隨x的增大而增大
D.當(dāng)x<0時(shí),y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、C、D都在⊙O上,過(guò)C點(diǎn)作CA∥BD交OD的延長(zhǎng)線(xiàn)于點(diǎn)A,連接BC,∠B=∠A=30°,BD=2 .
(1)求證:AC是⊙O的切線(xiàn);
(2)求由線(xiàn)段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)在圖中作出△ABC關(guān)于直線(xiàn)m對(duì)稱(chēng)的△A′B′C′,并寫(xiě)出A′、B′、C′三點(diǎn)的坐標(biāo)(2)猜想:坐標(biāo)平面內(nèi)任意點(diǎn)P(x,y)關(guān)于直線(xiàn)m對(duì)稱(chēng)點(diǎn)P′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知反比例函數(shù)y= 的圖象經(jīng)過(guò)點(diǎn)A,點(diǎn)O是坐標(biāo)原點(diǎn),OA=2且OA與x軸的夾角是60°.
(1)試確定此反比例函數(shù)的解析式;
(2)將線(xiàn)段OA繞O點(diǎn)順時(shí)針旋轉(zhuǎn)30°得到線(xiàn)段OB,判斷點(diǎn)B是否在此反比例函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地,先是一段平路,然后是一段上坡路。小明騎車(chē)從甲地出發(fā),到達(dá)乙地后立即原路返回甲地,途中休息了一段時(shí)間。假設(shè)小明騎車(chē)在平路、上坡、下坡時(shí)分別保持勻速前進(jìn).已知小明騎車(chē)上坡的速度比平路上的速度每小時(shí)少5km,下坡的速度比在平路上的速度每小時(shí)多5km。設(shè)小明出發(fā)xh后,到達(dá)離甲地y km的地方,圖中的折線(xiàn)OABCDE表示y與x之間的函數(shù)關(guān)系.
(1)小明騎車(chē)在平路上的速度為 km/h;他途中休息了 h;
(2)求線(xiàn)段AB,BC所表示的y與之間的函數(shù)關(guān)系式;
(3)如果小明兩次經(jīng)過(guò)途中某一地點(diǎn)的時(shí)間間隔為0.15h,那么該地點(diǎn)離甲地多遠(yuǎn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com