【題目】如圖,P是正三角形ABC內的一點,且PA=6,PB=8,PC=10若將△PAC繞點A逆時針后得到△P′AB.
(1)求點P與點P′之間的距離;
(2)求∠APB的大小.
【答案】(1)6;(2)150°.
【解析】試題分析:(1)由已知△PAC繞點A逆時針旋轉后,得到△P′AB,可得△PAC≌△P′AB,PA=P′A,旋轉角∠P′AP=∠BAC=60°,所以△APP′為等邊三角形,即可求得PP′;
(2)由△APP′為等邊三角形,得∠APP′=60°,在△PP′B中,已知三邊,用勾股定理逆定理證出直角三角形,得出∠P′PB=90°,可求∠APB的度數.
解:(1)連接PP′,由題意可知BP′=PC=10,AP′=AP,
∠PAC=∠P′AB,而∠PAC+∠BAP=60°,
所以∠PAP′=60度.故△APP′為等邊三角形,
所以PP′=AP=AP′=6;
(2)利用勾股定理的逆定理可知:
PP′2+BP2=BP′2,所以△BPP′為直角三角形,且∠BPP′=90°
可求∠APB=90°+60°=150°.
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,點P在AB上從A向B運動,連接DP交AC于點Q.
(1)試證明:無論點P運動到AB上何處時,都有△ADQ≌△ABQ;
(2)若點P從點A運動到點B,再繼續(xù)在BC上運動到點C,在整個運動過程中,當點P 運動到什么位置時,△ADQ恰為等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法正確的是( )
A. 過一點有且只有一條直線與已知直線平行
B. 相等的角是對頂角
C. 兩條直線被第三條直線所截,同旁內角互補
D. 在同一平面內,垂直于同一直線的兩條直線互相平行
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交AB于點M,交BC于點N,連接AN,過點C的切線交AB的延長線于點P.
(1)求證:∠BCP=∠BAN
(2)求證:=.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com