【題目】如圖1,在中,是直角,,、分別是、的平分線,、相交于點(diǎn).
(1)求出的度數(shù);
(2)判斷與之間的數(shù)量關(guān)系并說(shuō)明理由.(提示:在上截取,連接.)
(3)如圖2,在△中,如果不是直角,而(1)中的其它條件不變,試判斷線段、與之間的數(shù)量關(guān)系并說(shuō)明理由.
【答案】(1)∠AFC=120°;(2)FE與FD之間的數(shù)量關(guān)系為:DF=EF.理由見(jiàn)解析;(3)AC=AE+CD.理由見(jiàn)解析.
【解析】
(1)根據(jù)三角形的內(nèi)角和性質(zhì)只要求出∠FAC,∠ACF即可解決問(wèn)題;
(2)根據(jù)在圖2的AC上截取CG=CD,證得△CFG≌△CFD(SAS),得出DF=GF;再根據(jù)ASA證明△AFG≌△AFE,得EF=FG,故得出EF=FD;
(3)根據(jù)(2)的證明方法,在圖3的AC上截取AG=AE,證得△EAF≌△GAF(SAS)得出∠EFA=∠GFA;再根據(jù)ASA證明△FDC≌△FGC,得CD=CG即可解決問(wèn)題.
(1)解:∵∠ACB=90°,∠B=60°,
∴∠BAC=90°﹣60°=30°,
∵AD、CE分別是∠BAC、∠BCA的平分線,
∴∠FAC=15°,∠FCA=45°,
∴∠AFC=180°﹣(∠FAC+∠ACF)=120°
(2)解:FE與FD之間的數(shù)量關(guān)系為:DF=EF.
理由:如圖2,在AC上截取CG=CD,
∵CE是∠BCA的平分線,
∴∠DCF=∠GCF,
在△CFG和△CFD中,
,
∴△CFG≌△CFD(SAS),
∴DF=GF.∠CFD=∠CFG
由(1)∠AFC=120°得,
∴∠CFD=∠CFG=∠AFE=60°,
∴∠AFG=60°,
又∵∠AFE=∠CFD=60°,
∴∠AFE=∠AFG,
在△AFG和△AFE中,
,
∴△AFG≌△AFE(ASA),
∴EF=GF,
∴DF=EF;
(3)結(jié)論:AC=AE+CD.
理由:如圖3,在AC上截取AG=AE,
同(2)可得,△EAF≌△GAF(SAS),
∴∠EFA=∠GFA,AG=AE
∵∠BAC+∠BCA=180°-∠B=180°-60°=120°
∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-(∠BAC+∠BCA)=180°-×120°=120°,
∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,
∴∠CFG=∠CFD=60°,
同(2)可得,△FDC≌△FGC(ASA),
∴CD=CG,
∴AC=AG+CG=AE+CD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列各式及其驗(yàn)證過(guò)程:,驗(yàn)證:., 驗(yàn)證: .
(1)按照上述兩個(gè)等式及其驗(yàn)證過(guò)程,猜想的變形結(jié)果并進(jìn)行驗(yàn)證.
(2)針對(duì)上述各式反映的規(guī)律,寫出用a(a為任意自然數(shù),且a≥2)表示的等式,并給出驗(yàn)證.
(3)針對(duì)三次根式及n次根式(n為任意自然數(shù),且n≥2),有無(wú)上述類似的變形?如果有,寫出用a(a為任意自然數(shù),且a≥2)表示的等式,并給出驗(yàn)證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機(jī)摸出一張,記下字母后放回,充分洗勻后,再?gòu)闹忻鲆粡,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說(shuō)明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,.
(1)如圖1,在中,若,且,求證:;
(2)如圖2,在中,若,且垂直平分,,,求的長(zhǎng);
(3)如圖3,在中,當(dāng)垂直平分于,且時(shí),試探究,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,兩點(diǎn)在數(shù)軸上,點(diǎn)表示的數(shù)為-10,點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)距離的3倍,點(diǎn)以每秒3個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng).點(diǎn)以每秒2個(gè)單位長(zhǎng)度的速度從點(diǎn)向右運(yùn)動(dòng)(點(diǎn)、同時(shí)出發(fā))
(1)數(shù)軸上點(diǎn)對(duì)應(yīng)的數(shù)是______.
(2)經(jīng)過(guò)幾秒,點(diǎn)、點(diǎn)分別到原點(diǎn)的距離相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示(坐標(biāo)系內(nèi)正方形網(wǎng)格的單位長(zhǎng)度為1):
(1)在網(wǎng)格內(nèi)畫出和△ABC以點(diǎn)O為位似中心的位似圖形△A1B1C1,使△A1B1C1和△ABC的位似比為2:1且△A1B1C1位于y軸左側(cè);
(2)分別寫出A1、B1、C1三個(gè)點(diǎn)的坐標(biāo):A1 、B1 、C1 ;
(3)求△A1B1C1的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,的垂直平分線交于,交于.
(1)若,則的度數(shù)是 ;
(2)連接,若,的周長(zhǎng)是.
①求的長(zhǎng);
②在直線上是否存在點(diǎn),使由,,構(gòu)成的的周長(zhǎng)值最。咳舸嬖,標(biāo)出點(diǎn)的位置并求的周長(zhǎng)最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上,老師為了解女學(xué)生定點(diǎn)投籃的情況,隨機(jī)抽取8名女生進(jìn)行每人4次定點(diǎn)投籃的測(cè)試,進(jìn)球數(shù)的統(tǒng)計(jì)如圖所示.
(1)求女生進(jìn)球數(shù)的平均數(shù)、中位數(shù);
(2)投球4次,進(jìn)球3個(gè)以上(含3個(gè))為優(yōu)秀,全校有女生1200人,估計(jì)為“優(yōu)秀”等級(jí)的女生約為多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每個(gè)月可賣出200件;如果每件商品的售價(jià)每上漲1元.則每個(gè)月少賣10件.設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每個(gè)月的銷售利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)每件商品的售價(jià)定為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大的月利潤(rùn)是多少元?
(3)若每個(gè)月的利潤(rùn)不低于2160元,售價(jià)應(yīng)在什么范圍?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com