如圖,AE平分∠BAD,DE平分∠ADC,AB⊥BC于B,∠1+∠2=90°,
說明:(1)AB∥CD;(2)DC⊥BC.
(1)根據(jù)角平分線的性質(zhì)可得∠BAE=∠1,∠CDE=∠2,再結(jié)合∠1+∠2=90°,即可得到∠BAD+∠CDA=180°,從而可以證得結(jié)論;
(2)根據(jù)垂直的性質(zhì)可得∠ABC=90°,根據(jù)平行線的性質(zhì)可得∠ABC+∠BCD=180°,即可得到∠BCD=90°,從而可以證得結(jié)論.
【解析】
試題分析:(1)∵AE平分∠BAD,DE平分∠ADC,
∴∠BAE=∠1,∠CDE=∠2
∵∠1+∠2=90°
∴∠BAE+∠CDE=90°
∴∠BAD+∠CDA=180°
∴AB∥CD;
(2)∵AB⊥BC
∴∠ABC=90°
∵AB∥CD
∴∠ABC+∠BCD=180°
∴∠BCD=90°
∴DC⊥BC.
考點:角平分線的性質(zhì),平行線的判定和性質(zhì)
點評:解題的關(guān)鍵是熟練掌握角的平分線把角分成相等的兩個小角,且都等于大角的一半.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源:不詳 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com