【題目】如圖,在ABCD中,∠ADC的平分線交AB于點E,∠ABC的平分線交CD于點F,求證:四邊形EBFD是平行四邊形.

【答案】見解析

【解析】試題分析由在ABCD,ABC的平分線交CD于點F,ADC的平分線交AB于點E,易證得ADE=∠CBF,從而得到△ADE≌△CBF,繼而證得DF=EB,DFBE,則可證得四邊形EBFD是平行四邊形

試題解析證明四邊形ABCD是平行四邊形,AD=CB,A=∠C,ADC=∠ABC

∵∠ADE=ADC,CBF=ABC∴∠ADE=CBF,∴△ADE≌△CBF,AE=CF,ABAE=CDCFDF=EB.又DFEB,四邊形EBFD是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉嘉在電腦上設(shè)計了一個有理數(shù)的運算程序:輸入a,*再輸入b,得到運算a*b=(a2b2)÷(ab) .

(1)(-2)* * 的值;

(2)琪琪在運用此程序計算時,屏幕上顯示“該程序無法操作”請你運用所學(xué)的數(shù)學(xué)知識猜想一下,琪琪在輸入數(shù)據(jù)時,可能出現(xiàn)什么情況?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【探索新知】:如圖1,射線OC在∠AOB的內(nèi)部,圖中共有3個角:∠AOB,AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB巧分線

1)一個角的平分線   這個角的巧分線;(填不是

2)如圖2,若∠MPN=α,且射線PQ是∠MPN巧分線,則∠MPQ=   ;(用含α的代數(shù)式表示出所有可能的結(jié)果)

【深入研究】:如圖2,若∠MPN=60°,且射線PQ繞點PPN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQPN180°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

3)當(dāng)t為何值時,射線PM是∠QPN巧分線

4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ是∠MPN巧分線t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是      度;

(2)若連結(jié)EF,則△AEF 三角形;并證明;

(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正弦值等于(
A.
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD中,EAD上的一點,FAB上的一點,EF⊥EC,且EF=ECDE=4cm,矩形ABCD的周長為32cm,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同。

(1)籃球和排球的單價各是多少元?

(2)若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在日歷中任意圈出一個3×3的正方形,則里面九個數(shù)不滿足的關(guān)系式是( 。

A. a1+a2+a3+a7+a8+a9=2(a4+a5+a6

B. a1+a4+a7+a3+a6+a9=2(a2+a5+a8

C. a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5

D. (a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=20,BC=15,
(1)求AB的長;
(2)求CD的長.

查看答案和解析>>

同步練習(xí)冊答案