【題目】如圖,P是正方形ABCD對(duì)角線AC上一點(diǎn),點(diǎn)E在BC上,且PE=PB.
(1)求證:PE=PD;
(2)連接DE,試判斷∠PED的度數(shù),并證明你的結(jié)論.
【答案】(1)詳見解析;(2)∠PED=45°,證明見解析.
【解析】
試題分析:(1)根據(jù)正方形的性質(zhì)四條邊都相等可得BC=CD,對(duì)角線平分一組對(duì)角線可得∠ACB=∠ACD,然后利用“邊角邊”證明△PBC和△PDC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得PB=PD,然后等量代換即可得證;(2)根據(jù)全等三角形對(duì)應(yīng)角相等可得∠PBC=∠PDC,根據(jù)等邊對(duì)等角可得∠PBC=∠PEB,從而得到∠PDC=∠PEB,再根據(jù)∠PEB+∠PEC=180°求出∠PDC+∠PEC=180°,然后根據(jù)四邊形的內(nèi)角和定理求出∠DPE=90°,判斷出△PDE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求解即可.
試題解析:(1)∵四邊形ABCD是正方形,
∴BC=CD,∠ACB=∠ACD,
在△PBC和△PDC中,
,
∴△PBC≌△PDC(SAS),
∴PB=PD,
∵PE=PB,
∴PE=PD;
(2)判斷∠PED=45°.
∵四邊形ABCD是正方形,
∴∠BCD=90°,
∵△PBC≌△PDC,
∴∠PBC=∠PDC,
∵PE=PB,
∴∠PBC=∠PEB,
∴∠PDC=∠PEB,
∵∠PEB+∠PEC=180°,
∴∠PDC+∠PEC=180°,
在四邊形PECD中,∠EPD=360°﹣(∠PDC+∠PEC)﹣∠BCD=360°﹣180°﹣90°=90°,
又∵PE=PD,
∴△PDE是等腰直角三角形,
∴∠PED=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)中,不能作為直角三角形三邊長(zhǎng)的是( 。
A. 1.5,2,3 B. 5,12,13 C. 7,24,25 D. 8,15,17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形中, ,點(diǎn)是的中點(diǎn).
(1)求證: 是等腰三角形:
(2)當(dāng)= ° 時(shí), 是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第1個(gè)等式:; 第2個(gè)等式:;
第3個(gè)等式:; 第4個(gè)等式:;…
請(qǐng)解答下列問題:
(1)按以上規(guī)律列出第5個(gè)等式:a5= .
(2)用含有n的代數(shù)式表示第n個(gè)等式:an=(n為正整數(shù))
(3)求a1+a2+a3+a4+…+a100的值.
(4)探究計(jì)算:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB、BC、AC三邊的長(zhǎng)分別為, , ,求這個(gè)三角形的面積.小明同學(xué)在解答這道題時(shí),先畫一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積.
(1)△ABC的面積為 .
(2)若△DEF的三邊DE、EF、DF長(zhǎng)分別為, , ,請(qǐng)?jiān)趫D2的正方形網(wǎng)格中畫出相應(yīng)的△DEF,并求出△DEF的面積為 .
(3)在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD(D與C在AB異側(cè)),使△ABD為等腰直角三角形,則線段CD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點(diǎn)D為BC上一點(diǎn),且AD=DC,過A,B,D三點(diǎn)作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC=,AC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,從左起第1個(gè)等邊三角形的邊長(zhǎng)記為a1,第2個(gè)等邊三角形的邊長(zhǎng)記為a2,以此類推.若OA1=1,則a2017= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩城市之間開通了動(dòng)車組高速列車.已知每隔2h有一列速度相同的動(dòng)車組列車從甲城開往乙城.如圖,OA是第一列動(dòng)車組列車離開甲城的路程s(km)與運(yùn)行時(shí)間t(h)的函數(shù)圖象,BC是一列從乙城開往甲城的普通快車距甲城的路程s(km)與運(yùn)行時(shí)間t(h)的函數(shù)圖象.請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)從圖象看,普通快車發(fā)車時(shí)間比第一列動(dòng)車組列車發(fā)車時(shí)間 1h(填”早”或”晚”),點(diǎn)B的縱坐標(biāo)600的實(shí)際意義是 ;
(2)請(qǐng)直接在圖中畫出第二列動(dòng)車組列車離開甲城的路程s(km)與時(shí)間t(h)的函數(shù)圖象;
(3)若普通快車的速度為100km/h,
①求第二列動(dòng)車組列車出發(fā)多長(zhǎng)時(shí)間后與普通快車相遇?
②請(qǐng)直接寫出這列普通快車在行駛途中與迎面而來的相鄰兩列動(dòng)車組列車相遇的時(shí)間間隔.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com