【題目】數(shù)學(xué)活動(dòng)課上,小明同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖像、性質(zhì)進(jìn)行了探究,下面是小明同學(xué)探究過(guò)程,請(qǐng)補(bǔ)充完整:

如圖1,已知在,,,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),連接.設(shè),

(初步感知)

1)當(dāng)時(shí),則①________,②________;

(深入思考)

2)試求之間的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍;

3)通過(guò)取點(diǎn)測(cè)量,得到了的幾組值,如下表:

0

0.5

1

1.5

2.

2.5

3

3.5

4

2

1.8

1.7

_____

2

2.3

2.6

3.0

_____

(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

1)建立平面直角坐標(biāo)系,如圖2,描出已補(bǔ)全后的表中各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象;

2)結(jié)合畫(huà)出的函數(shù)圖象,寫(xiě)出該函數(shù)的兩條性質(zhì):

________________________________;②________________________________

【答案】1)①;②;(2;(31.8,3.5;1)作圖見(jiàn)解析;2)①的最小值為(或1.7),②當(dāng)時(shí),增大而減。

【解析】

1)根據(jù)含30度直角三角形的性質(zhì)求出BP,CP即可;

2)過(guò),分兩種情況:①當(dāng)時(shí),②當(dāng)時(shí),分別利用勾股定理計(jì)算即可;

3)分別求出x1.5x4時(shí)y的值,即可補(bǔ)全表格;

1)描點(diǎn)、連線即可;

2)根據(jù)函數(shù)圖象,可從最值和增減性方面寫(xiě)出函數(shù)的性質(zhì).

解:(1)當(dāng)時(shí),BPBC1,CP,

故答案為:①;②;

2)過(guò),

由(1)可知,,

①當(dāng)時(shí),如圖1-1,,

;

②當(dāng)時(shí),如圖1-2,,,

綜合①②可得:;

3)當(dāng)x1.5時(shí),,

當(dāng)x4時(shí),,

0

0.5

1

1.5

2.

2.5

3

3.5

4

2

1.8

1.7

1.8

2

2.3

2.6

3.0

3.5

1)函數(shù)圖象如圖所示:

2)由函數(shù)圖象得:①的最小值為(或1.7);②當(dāng)時(shí),增大而減。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某區(qū)八年級(jí)有3000名學(xué)生參加“愛(ài)我中華”知識(shí)競(jìng)賽活動(dòng),為了了解本次知識(shí)競(jìng)賽的成績(jī)分布情況,從中抽取了部分學(xué)生的得分進(jìn)行統(tǒng)計(jì).

成績(jī)x(分)

頻數(shù)

頻率

50≤x60

10

a

60≤x70

16

0.08

70≤x80

b

0.20

請(qǐng)你根據(jù)以上的信息,回答下列問(wèn)題:

(1) a= ,b= ;

(2) 在扇形統(tǒng)計(jì)圖中,“成績(jī)x滿足50≤x60”對(duì)應(yīng)扇形的圓心角大小是 ;

(3) 若將得分轉(zhuǎn)化為等級(jí),規(guī)定:50≤x60評(píng)為D,60≤x70評(píng)為C,70≤x90評(píng)為B90≤x100評(píng)為A.這次全區(qū)八年級(jí)參加競(jìng)賽的學(xué)生約有 學(xué)生參賽成績(jī)被評(píng)為“B”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:如何使用尺規(guī)完成“過(guò)直線l外一點(diǎn)P作已知直線l的平行線”.

小明的作法如下:

①在直線l上取一點(diǎn)A,以點(diǎn)A為圓心,AP長(zhǎng)為半徑作弧,交直線l于點(diǎn)B

②分別以P,B為圓心,以AP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q(與點(diǎn)A不重合);

③作直線PQ.所以直線PQ就是所求作的直線.根據(jù)小明的作圖過(guò)程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵ABAP      

∴四邊形ABQP是菱形(   )(填推理的依據(jù)).

PQl

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)為圓心,為半徑的圓上的動(dòng)點(diǎn),是線段的中點(diǎn),連接,則線段的最小值是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D是邊BC上的動(dòng)點(diǎn),連接AD,點(diǎn)C關(guān)于直線AD的對(duì)稱點(diǎn)為點(diǎn)E,射線BE與射線AD交于點(diǎn)F.

1)在圖1中,依題意補(bǔ)全圖形;

2)記),求的大。唬ㄓ煤的式子表示)

3)若△ACE是等邊三角形,猜想EFBC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形具有不穩(wěn)定性,如圖,在平面直角坐標(biāo)系中,矩形的邊軸上,且點(diǎn),邊長(zhǎng)為.現(xiàn)固定邊,向右推動(dòng)矩形使點(diǎn)落在軸上(落點(diǎn)記為),點(diǎn)的對(duì)應(yīng)點(diǎn)記為,已知矩形與推動(dòng)后形成的平行四邊形的面積比為,則點(diǎn)坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

對(duì)于任意正實(shí)數(shù)a、b

,

當(dāng)且僅當(dāng)時(shí),等號(hào)成立.

結(jié)論:在均為正實(shí)數(shù))中,若為定值當(dāng)且僅當(dāng)時(shí),a+b有最小值

拓展:對(duì)于任意正實(shí)數(shù),都有當(dāng)且僅當(dāng)時(shí),等號(hào)成立.

(a、b、c均為正實(shí)數(shù))中,若為定值,則當(dāng)且僅當(dāng)時(shí),有最小值

例如:,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

又如:若的最小值時(shí),因?yàn)?/span>當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,故當(dāng)時(shí),有最小值

根據(jù)上述材料,解答下列問(wèn)題:

1)若a為正數(shù),則當(dāng)a=______時(shí),代數(shù)式取得最小值,最小值為_____;

2)已知函數(shù)與函數(shù),求函數(shù)的最小值及此時(shí)的值;

3)我國(guó)某大型空載機(jī)的一次空載運(yùn)輸成本包含三部分:一是基本運(yùn)輸費(fèi)用,共8100元;二是飛行耗油,每一百公里1200元;三是飛行報(bào)耗費(fèi)用,飛行報(bào)耗費(fèi)用與路程(單位:百公里)的平方成正比,比例系數(shù)為0.04,設(shè)該空載機(jī)的運(yùn)輸路程為百公里,則該空載機(jī)平均每一百公里的運(yùn)輸成本最低為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線 x 軸交于點(diǎn) A、B,與 y 軸交于點(diǎn) C,且 OC2OB, 點(diǎn) D 為線段 OB 上一動(dòng)點(diǎn)(不與點(diǎn) B 重合),過(guò)點(diǎn) D 作矩形 DEFH,點(diǎn) HF 在拋物線上,點(diǎn) E x 上.

1)求拋物線的解析式;

2)當(dāng)矩形 DEFH 的周長(zhǎng)最大時(shí),求矩形 DEFH 的面積;

3)在(2)的條件下,矩形 DEFH 不動(dòng),將拋物線沿著 x 軸向左平移 m 個(gè)單位,拋物線與矩形 DEFH的邊交于點(diǎn) M、N,連接 M、N.若 MN 恰好平分矩形 DEFH 的面積,求 m 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】題目:為了美化環(huán)境,某地政府計(jì)劃對(duì)轄區(qū)內(nèi)的土地進(jìn)行綠化.為了盡快完成任務(wù),實(shí)際平均每月的綠化面積是原計(jì)劃的15倍,結(jié)果提前2個(gè)月完成任務(wù).求原計(jì)劃平均每月的綠化面積.

甲同學(xué)所列的方程為

乙同學(xué)所列的方程為

1)甲同學(xué)所列的方程中表示 .乙同學(xué)所列的方程中表示

2)任選甲、乙兩同學(xué)的其中一個(gè)方法解答這個(gè)題目.

查看答案和解析>>

同步練習(xí)冊(cè)答案