【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如下表:

X

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
⑴ac<0;
⑵當(dāng)x>1時,y的值隨x值的增大而減小.
⑶3是方程ax2+(b﹣1)x+c=0的一個根;
⑷當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的個數(shù)為( )
A.4個
B.3個
C.2個
D.1個

【答案】B
【解析】解:(1)由圖表中數(shù)據(jù)可得出:x=1時,y=5,所以二次函數(shù)y=ax2+bx+c開口向下,a<0;又x=0時,y=3,所以c=3>0,所以ac<0,故(1)正確;(2)∵二次函數(shù)y=ax2+bx+c開口向下,且對稱軸為x= =1.5,∴當(dāng)x≥1.5時,y的值隨x值的增大而減小,故(2)錯誤;(3)∵x=3時,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一個根,故(3)正確;(4)∵x=﹣1時,ax2+bx+c=﹣1,∴x=﹣1時,ax2+(b﹣1)x+c=0,∵x=3時,ax2+(b﹣1)x+c=0,且函數(shù)有最大值,∴當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0,故(4)正確.

所以答案是:B.

【考點精析】利用二次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。欢魏瘮(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,MN分別是邊AB、BC的中點,E、F是邊AC上的三等分點,連接ME、NF且延長后交于點D,連接BE、BF

1)求證:四邊形BFDE是平行四邊形;(2)當(dāng)△ABC滿足什么條件時四邊形BFDE是菱形,證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線PQMN,點CPQMN之間(不在直線PQ,MN上)的一個動點.

1)若∠1與∠2都是銳角,如圖甲,請直接寫出∠C與∠1,∠2之間的數(shù)量關(guān)系;

2)若把一塊三角尺(∠A30°,∠C90°)按如圖乙方式放置,點D,E,F是三角尺的邊與平行線的交點,若∠AEN=∠A,求∠BDF的度數(shù);

3)將圖乙中的三角尺進(jìn)行適當(dāng)轉(zhuǎn)動,如圖丙,直角頂點C始終在兩條平行線之間,點G在線段CD上,連接EG,且有∠CEG=∠CEM,求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,AB,BC,AC三邊的長分別為、,求這個三角形的面積小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格每個小正方形的邊長為,再在網(wǎng)格中畫出格點的三個頂點都在正方形的頂點處,如圖所示,這樣不需要求的高,而借用網(wǎng)格就能計算出它的面積.

請你將的面積直接填寫在橫線上.______

已知,DE、EF、DF三邊的長分別為、、

是否為直角形,并說明理由.

求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地的一座人行天橋如圖所示,天橋高為6米,坡面BC的坡度為1:1,為了方便行人推車過天橋,有關(guān)部門決定降低坡度,使新坡面的坡度為1:

(1)求新坡面的坡角a;
(2)原天橋底部正前方8米處(PB的長)的文化墻PM是否需要拆除?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)時代新興詞匯層出不窮.為了解大眾對網(wǎng)絡(luò)詞匯的理解,某興趣小組舉行了一個調(diào)查活動:選取四個熱詞A:“硬核人生”,B:“好嗨哦”,C:“雙擊666”,D:“杠精時代”在街道上對流動人群進(jìn)行了抽樣調(diào)查,要求被調(diào)查的每位只能勾選一個最熟悉的熱詞,根據(jù)調(diào)查結(jié)果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名路人?

2)補(bǔ)全條形統(tǒng)計圖,并求出a的值;

3)請算出扇形圖中的b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中:①0是最小的整數(shù);②有理數(shù)不是正數(shù)就是負(fù)數(shù);③非負(fù)數(shù)就是正數(shù);④不僅是有理數(shù),而且是分?jǐn)?shù);⑤是無限不循環(huán)小數(shù),所以不是有理數(shù);⑥無限小數(shù)不都是有理數(shù);⑦正數(shù)中沒有最小的數(shù),負(fù)數(shù)中沒有最大的數(shù).其中錯誤的說法的個數(shù)為(

A.7B.6C.5D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.

(1)求該拋物線的解析式;
(2)當(dāng)動點P運動到何處時,BP2=BDBC;
(3)當(dāng)△PCD的面積最大時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.

(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案