【題目】如圖,ABCD,連接AD,點(diǎn)EAD的中點(diǎn),連接BE并延長(zhǎng)交CDF點(diǎn).

(1)請(qǐng)說(shuō)明△ABE≌△DFE的理由;

(2)連接CB,AC,若CBCD,AC=CD,∠D=30°CD=2,求BF的長(zhǎng).

【答案】(1)證明見(jiàn)解析;(2)BF=2

【解析】

利用三角形全等判定條件ASA進(jìn)行判斷.

利用30°所對(duì)直角邊等于斜邊的一半求出CE的長(zhǎng),再利用BF=2CE求出BF的長(zhǎng)度.

證明:∵ABCD

∴∠BAE=EDF

∵點(diǎn)EAD的中點(diǎn)

AE=ED

又∵∠AEB=FED

∴△ABE≌△DFEASA

2)∵AC=CD EAD中點(diǎn) CEAD

∵∠D=30°CD=2 CE=1

又∵CBCDBE=EF BF=2CE

BF=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AD=3,∠CAB=30°,點(diǎn)P是線段AC上的動(dòng)點(diǎn),點(diǎn)Q是線段CD上的動(dòng)點(diǎn),則AQ+QP的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長(zhǎng)為1,

1)作△ABC關(guān)于軸的對(duì)稱圖形△ABC(不寫做法),并寫出ABC'的坐標(biāo),想一想:關(guān)于軸對(duì)稱的兩個(gè)點(diǎn)之間有什么關(guān)系?

2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直線、相交于,射線位置起始,繞點(diǎn)逆時(shí)針旋轉(zhuǎn),終邊與始邊形成的角度為.

問(wèn)題1:若逆時(shí)針旋轉(zhuǎn)停止,則

1__________________時(shí),平分

2__________________時(shí),

3__________________時(shí),

問(wèn)題2:若逆時(shí)針旋轉(zhuǎn)的速度為每秒,在勻速旋轉(zhuǎn)的同時(shí),直線也從圖的位置開(kāi)始繞點(diǎn)逆時(shí)針勻速旋轉(zhuǎn),旋轉(zhuǎn)速度為每秒,當(dāng)完成旋轉(zhuǎn)一周時(shí),也同時(shí)停止旋轉(zhuǎn).設(shè)旋轉(zhuǎn)時(shí)間為)秒.

1)旋轉(zhuǎn)時(shí)間為多少時(shí),射線重合.請(qǐng)寫出求解過(guò)程.

2)觀察旋轉(zhuǎn)全過(guò)程,判斷旋轉(zhuǎn)時(shí)間為多少時(shí),射線平分.請(qǐng)直接寫出的值.(注:指大于且小于的角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(一1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ACM周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo)及△ACM的最小周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn)再求值:當(dāng)a=9時(shí),求a+的值,甲乙兩人的解答如下:

甲的解答為:原式=a+=a+(1-a)=1.

乙的解答為:原式=a+=a+(a-1)=2a-1=17.

兩種解答中,_____的解答是錯(cuò)誤的,錯(cuò)誤的原因是當(dāng)a=9時(shí)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某電腦公司有A型、B型、C型三種型號(hào)的電腦,其價(jià)格分別為A型每臺(tái)6 000元,B型每臺(tái)4 000元,C型每臺(tái)2 500元,我市東坡中學(xué)計(jì)劃將100 500元錢全部用于該電腦公司購(gòu)進(jìn)其中兩種不同型號(hào)的電腦共36臺(tái),請(qǐng)你設(shè)計(jì)出幾種不同的購(gòu)買方案供該校選擇,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線EF,CD相交于點(diǎn)0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度數(shù);

(2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)

(3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= (x>0)的圖象和矩形ABCD在第一象限,AD平行于x軸,且AB=2,AD=4,點(diǎn)A的坐標(biāo)為(2,6).

(1)直接寫出B、C、D三點(diǎn)的坐標(biāo);
(2)若將矩形向下平移,矩形的兩個(gè)頂點(diǎn)恰好同時(shí)落在反比例函數(shù)的圖象上,猜想這是哪兩個(gè)點(diǎn),并求矩形的平移距離和反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案