【題目】下列結(jié)論中,錯誤結(jié)論有( );①三角形三條高(或高的延長線)的交點不在三角形的內(nèi)部,就在三角形的外部;②一個多邊形的邊數(shù)每增加一條,這個多邊形的內(nèi)角和就增加360;③兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相平行;④三角形的一個外角等于任意兩個內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長三角形的三邊,所得的三角形三個外角中銳角最多有一個

A. 6B. 5C. 4D. 3

【答案】C

【解析】

根據(jù)直角三角形的高線相交于直角頂點可對①進行判斷;根據(jù)n邊的內(nèi)角和公式(n-2180°對②進行判斷;根據(jù)平行線的性質(zhì)和垂直的定義對③進行判斷;根據(jù)三角形外角性質(zhì)對④進行判斷;根據(jù)三角形內(nèi)角和對⑤⑥進行判斷.

解:三角形三條高(或高的延長線)的交點不在三角形的內(nèi)部,就在三角形的外部或邊上,所以①為假命題;
一個多邊形的邊數(shù)每增加一條,這個多邊形的內(nèi)角和就增加180°,所以②為假命題;
兩條平行直線被第三條直線所截,同旁內(nèi)角的角平分線互相垂直,所以③為假命題;
三角形的一個外角等于任意不相鄰的兩個內(nèi)角的和,所以④為假命題;
ABC中,若,∠A==30°,∠C=3A=90°ABC為直角三角形,所以⑤為真命題;

一個三角形最多有一個內(nèi)角是鈍角,外角和相鄰內(nèi)角互補,所以最多一個銳角,所以⑥為真命題.
故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知是⊙的直徑,弦交于點,過點作⊙的切線與的延長線交于點, 交直線于點

)若,求證: 是⊙的切線;

)如果 的中點,求直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B的坐標分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點AB的對應點C,D,連接AC,BD

1)求點CD的坐標及四邊形ABDC的面積S四邊形ABDC

2)在y軸上是否存在一點P,連接PAPB,使SPAB=S四邊形ABDC?若存在這樣一點,求出點P的坐標;若不存在,試說明理由;

3)點P是直線BD上一個動點,連接PC、PO ,當點P在直線BD上運動時,請直接寫出∠OPC與∠PCD、∠POB的數(shù)量關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某面包店推出一款新口味面包,每個成本1.5元,售價5/個,試營業(yè)期間一律8折,每天只生產(chǎn)50個,為保持面包新鮮,當天未賣完的當天銷毀,試營業(yè)期間市場日需求量(即每天所需數(shù)量)如表所示:

天數(shù)

8

10

10

2

日需求量/

45

48

51

56

1)補充日銷售量(即每天銷售的數(shù)量)的條形統(tǒng)計圖;

2)試營業(yè)期間某天的日需求量為45個,求當天的利潤;

3)求試營業(yè)期間(30)天的總利潤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=C=45°,ADB=ABC=105°.

(1)若AD=2,求AB;

(2)若AB+CD=2+2,求AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知.

1)如圖1,、分別平分、.試說明:;

2)如圖2,若,、分別平分、,那么 (只要直接填上正確結(jié)論即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點為直線上一點,過點作射線,使,將一把直角三角尺的直角頂點放在點處,一邊在射線上,另一邊在直線的下方,其中.

1)將圖1中的三角尺繞點順時針旋轉(zhuǎn)至圖2,使一邊的內(nèi)部,且恰好平分,求的度數(shù);

2)將圖1中三角尺繞點按每秒10的速度沿順時針方向旋轉(zhuǎn)一周,旋轉(zhuǎn)過程中,在第 秒時,邊恰好與射線平行;在第 秒時,直線恰好平分銳角.

3)將圖1中的三角尺繞點順時針旋轉(zhuǎn)至圖3,使的內(nèi)部,請?zhí)骄?/span>之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的面積為.點從點出發(fā),以每秒個單位的速度向點運動:點從點同時出發(fā),以每秒個單位的速度向點運動.規(guī)定其中一個點到達端點時,另一個點也隨之停止運動。

1)求線段的長;

2)設點運動的時間為秒,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在五邊形ADBCE中,∠ADB=∠AEC=90°,∠DAB=∠EAC,M、N、O分別為AC、AB、BC的中點.

(1)求證:△EMO≌△OND;

(2)若AB=AC,且∠BAC=40°,當∠DAB等于多少時,四邊形ADOE是菱形,并證明.

查看答案和解析>>

同步練習冊答案