如圖,△ABC中,∠ABC=45°,∠BAC=60°,D為BC上一點,∠ADC=60°.AE⊥BC于點E.CF⊥AD于點F,AE、CF相交于點G.
(1)求證:DF=FG;
(2)若DC=2,AF=數(shù)學(xué)公式,求線段EG的長.

證明:(1)∵∠ABC=45°,∠BAC=60°,
∴∠ADB=120°,又∵∠BAC=60°,
∴∠DAC=45°,
又∵CF⊥AD,
∴∠AFC=∠CFD=90°,∠ACF=∠DAC=45°,
∴AF=CF,
∴△AFG≌△CFD,
∴DF=FG;

(2)在Rt△CFD中,∠CFD=90°,∠FCD=30°,
∴DF=CD=1,
∴FG=DF=1,
又∵△AFG≌△CFD,
∴CF=AF=,
∴CG=CF-FG=-1,在Rt△CGE中,∠AEC=90°,∠FCD=30°,
∴EG=CG=
分析:(1)根據(jù)題意分析DF和FG分別放在三角形ADE和三角形CDF中,證明三角形ADE和三角形CDF全等即可得到DF=FG,全等的方法是,由AE⊥BC和CF⊥AD得到角CFD等于角AED,角ADC為公共角,根據(jù)∠ABC=45°,∠ADC=60°,利用三角形的外角的性質(zhì)得到角BAD等于15°,由∠BAC=60°得到角FAC等于45°,所以三角形AFC為等腰直角三角形,得到AF等于CF,即可得到兩三角形全等,根據(jù)全等三角形的對應(yīng)邊相等即可得證;
(2)在三角形CDF中,因為角FDC等于60°,角CFD等于90°,所以得到角DCF等于30°,利用30°角所對的直角邊等于斜邊的一半,得到FD等于CD的一半,由第一問的結(jié)論可知FG等于DF都等于1,由全等得到CF等于AF都等于,利用CF減FG即可求出CG,所以EG等于CG的一半即可求出.
點評:此題考查學(xué)生掌握三角形全等的證明方法,靈活運用直角三角形中30°角所對的直角邊等于斜邊的一半化簡求值,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案