【題目】如圖,反比例函數(shù)y= (k≠0)與一次函數(shù)y=kx+k(k≠0)在同一平面直角坐標系內(nèi)的圖象可能是( )
A.
B.
C.
D.

【答案】D
【解析】解:①當k>0時,y=kx+k過一、二、三象限;y= 過一、三象限; ②當k<0時,y=kx+k過二、三、四象象限;y= 過二、四象限.
觀察圖形可知只有D符合②.
故選D.
【考點精析】利用一次函數(shù)的圖象和性質(zhì)和反比例函數(shù)的圖象對題目進行判斷即可得到答案,需要熟知一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點O,OAC的中點,AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,拋物線y=x2+bx+c過點A(3,0),B(1,0),交y軸于點C,點P是該拋物線上一動點,點P從C點沿拋物線向A點運動(點P不與點A重合),過點P作PD∥y軸交直線AC于點D.

(1)求拋物線的解析式;
(2)求點P在運動的過程中線段PD長度的最大值;
(3)△APD能否構(gòu)成直角三角形?若能請直接寫出點P坐標,若不能請說明理由;
(4)在拋物線對稱軸上是否存在點M使|MA﹣MC|最大?若存在請求出點M的坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去冬今春,我市部分地區(qū)遭受了罕見的旱災,旱災無情人有情.某單位給某鄉(xiāng)中小學捐獻一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.

1)求飲用水和蔬菜各有多少件?

2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運往該鄉(xiāng)中小學.已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運輸部門安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計出來;

3)在(2)的條件下,如果甲種貨車每輛需付運費400元,乙種貨車每輛需付運費360元.運輸部門應選擇哪種方案可使運費最少?最少運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形的頂點C與原點O重合,點By軸的正半軸上,點A在反比例函數(shù)的圖象上,點D的坐標為.將菱形ABCD沿x軸正方向平移____個單位,可以使菱形的另一個頂點恰好落在該函數(shù)圖象上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學閱讀:

古希臘數(shù)學家海倫曾提出一個利用三角形三邊之長求面積的公式:若一個三角形的三邊長分別為ab、c,則這個三角形的面積為,其中.這個公式稱為海倫公式

數(shù)學應用:

如圖1,在ABC中,已知AB=9AC=8,BC=7.

1)請運用海倫公式求ABC的面積;

2)設(shè)AB邊上的高為,AC邊上的高,求的值;

3)如圖2,ADBEABC的兩條角平分線,它們的交點為I,求ABI的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形A1B1B2C1 , A2B2B3C2 , A3B3B4C3 , …,AnBnBn+1Cn , 按如圖所示放置,使點A1、A2、A3、A4、、An在射線OA上,點B1、B2、B3、B4、、Bn在射線OB上.若∠AOB=45°,OB1=1,圖中陰影部分三角形的面積由小到大依次記作S1 , S2 , S3 , …,Sn , 則Sn=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,將兩條等寬的紙條重疊在一起,得到四邊形,若,則___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司為了擴大經(jīng)營,決定購進6臺機器用于生產(chǎn)某種活塞.現(xiàn)有甲、乙兩種機器供選擇,其中每種機器的價格和每臺機器日生產(chǎn)活塞的數(shù)量如下表所示,經(jīng)過預算,本次購買機器所耗資金不能超過34萬元.

價格(萬元/臺)

7

5

每臺日產(chǎn)量(個)

100

60

(1)按該公司要求可以有幾種購買方案?

(2)若該公司購進的6臺機器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應選擇哪種購買方案?

查看答案和解析>>

同步練習冊答案