【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于兩點,過點軸,垂足為點,且。

1)求一次函數(shù)與反比例函數(shù)的表達式;

2)根據(jù)所給條件,請直接寫出不等式的解集;

3)若是反比例函數(shù)圖象上的兩點,且,求實數(shù)的取值范圍。

【答案】(1),;(2);(3)

【解析】

(1)把的坐標代入一次函數(shù)的解析式,得到,再根據(jù)以為底的三角形ABC的面積為5求得mn的值,繼而求得一次函數(shù)與反比例函數(shù)的表達式;

(2)根據(jù)的橫坐標,結(jié)合圖象即可得出答案;

(3)分為兩種情況:當點P在第三象限和在第一象限上時,根據(jù)坐標和圖象即可得出答案.

解:

(1)∵點在一次函數(shù)的圖象上,

,

,

,

,且,

,

解得:(舍去),則

,得

∴一次函數(shù)的表達式為;

又將代入,得,

∴反比例函數(shù)的表達式為

(2)不等式的解集為;

(3)∵點在反比例函數(shù)圖象上,且點在第三象限內(nèi),

∴當點在第一象限內(nèi)時,總有,此時,

當點在第三象限內(nèi)時,要使,

∴滿足的取值范圍是。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A在反比例函數(shù)y=(x>0)的圖象上,作RtABC,邊BCx軸上,點D為斜邊AC的中點,連結(jié)DB并延長交y軸于點E,若BCE的面積為4,則k=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形OABC的邊長為2,點A在第一象限,點C在x軸正半軸上,AOC=60°,若將菱形OABC繞點O順時針旋轉(zhuǎn)75°,得到四邊形OA′B′C′,則點B的對應點B′的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】程大位是我國明朝商人,珠算發(fā)明家60歲時完成的直指算法統(tǒng)宗是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法對書中某一問題改編如下:

一百饅頭一百僧,大僧三個更無爭;

小僧三人分一個,大僧共得幾饅頭.

一百饅頭一百僧,大僧三個更無爭;

小僧三人分一個,大僧共得幾饅頭.

意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個正好分完,大和尚共分得  個饅頭

A. 25B. 72C. 75D. 90

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,函數(shù)為常數(shù),,)的圖象經(jīng)過點,直線軸,軸分別交于兩點.

1)求的度數(shù);

2)如圖2,連接、,當時,求此時的值:

3)如圖3,點,點分別在軸和軸正半軸上的動點.再以、為鄰邊作矩形.若點恰好在函數(shù)為常數(shù),,)的圖象上,且四邊形為平行四邊形,求此時、的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( 。

A. <m<3 B. <m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】操場上有三根測桿ABMNXY,MNXY,其中測桿AB在太陽光下某一時刻的影子為BC(如圖中粗線).

(1)畫出測桿MN在同一時刻的影子NP(用粗線表示),并簡述畫法;

(2)若在同一時刻測桿XY的影子的頂端恰好落在點B處,畫出測桿XY所在的位置(用實線表示),并簡述畫法.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,PA切⊙O于點A,PB切⊙O于點B,且∠APB60°

1)求∠BAC的度數(shù);

2)若PA,求點O到弦AB的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,點E,F分別在BC,CD上,將ABE沿AE折疊,使點B落在AC上的點B′處,又將CEF沿EF折疊,使點C落在直線EB′AD的交點C′處,DF=_______

查看答案和解析>>

同步練習冊答案